Continental-Scale Trace-Gas Measurements over the United States During COBRA 2000

<u>J. B. Miller</u>¹, B. B. Stephens¹, P. S. Bakwin¹, P. P. Tans¹, S. C. Wofsy², B. C. Daube², A. E. Andrews², J. C. Lin², C. Gerbig², R. F. Keeling³

¹NOAA Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80305;

303-497-7739, Fax: 303-497-6290, E-mail: jmiller@cmdl.noaa.gov

³Scripps Institution of Oceanography, La Jolla, CA

During August 2000 the CMDL Carbon Cycle Greenhouse Gases Group participated in the CO₂ Budget and Rectification Airborne (COBRA) study together with groups from Harvard University, University of North Dakota, and Scripps Institution of Oceanography. The COBRA study is the first continental-scale survey of trace gas mole fractions and isotope ratios. During the COBRA study CO₂, CO, CH₄, N₂O, SF₆, H₂, and δ^{13} CO₂ were measured between the surface and 10,000 m in the eastern two thirds of the coterminous United States. Both continuous and flask measurements of CO₂ show strong terrestrial uptake of CO₂ in the northern half of the country but seem to indicate a small source of CO₂ south of about 40°N. In addition, higher levels of CO₂ uptake were observed east of 100°W, which correlate well with large-scale precipitation and temperature patterns for summer 2000. CO measurements show the influence of both urban pollution and biomass burning. Biomass burning signals from the western United States and Canada are evident as far east as Boston. Using CO and SF₆ as tracers for the biomass burning (CO) and urban pollution (both CO and SF₆) components of CO₂ mole fractions, the influence of terrestrial biology on the CO₂ measurements can be calculated. Knowing the fossil fuel, biomass burning, and biologically derived fractions of CO₂ will allow us to compare modeled and observed CO₂ mole fractions over the United States during August 2000.

Spatial patterns present in δ^{13} C and other trace gases will also examined. The combined CO₂ and δ^{13} C data sets can yield information on the type of plants responsible for CO₂ exchange with the atmosphere. Measurements indicate surface sources of both CH₄ and N₂O, and a surface sink for H₂, although the anthropogenic and natural fractions of these fluxes are unknown at present.

 CO_2 and CH_4 mole fractions over the northern part of the United States measured during a flight on August 19, 2000. CO_2 measurements (in ppm; circles = flask measurements, lines = continuous measurements) exhibit strong gradients indicating uptake, except over the region around the Great Lakes. CH_4 measurements (in ppb) exhibit gradients opposite in sign to CO_2 , indicating a surface source.

² Harvard University, Cambridge, MA