Tall Tower and Aircraft Measurements of Carbon Dioxide: Prospects for the North American Carbon Program (NACP)

P. Bakwin

NOAA Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80305; 303-497-6773, Fax: 303-497-6290, E-mail: Peter.Bakwin@noaa.gov

For over 10 years, we have monitored carbon dioxide mixing ratios over North America from tall (up to 600 m) transmitter towers (e.g., Figure 1) and aircraft (up to 8 km). The data, though sparse, give a measure of the temporal and 3-D spatial variability of CO_2 over the continent. Analysis of these data suggests ways in which measurements from a more extensive network of sites, such as is envisioned for the NACP, could be used to estimate net CO_2 surface fluxes on a regional scale (i.e., roughly one million square kilometers). We also evaluate the use of mixing ratio data from short (30-100 m) towers for regional flux estimates. Short towers are widely used for local-scale (a few hectares) measurements of atmosphere-surface exchange of CO_2 (FLUXNET). The results indicate that measurements of CO_2 mixing ratios at continental tower sites can be used to constrain estimates of regional CO_2 fluxes. However, at present, CO_2 mixing ratios are measured with sufficient accuracy relative to global reference gas standards at only a few continental sites.

Figure 1. Photo showing a 447-m-tall television transmitter tower in northern Wisconsin, which CMDL uses to measure CO_2 mixing ratios up to 400 m above the ground. The atmospheric boundary layer (ABL) depth is approximated by the cloud base. In this poster we discuss the budget of CO_2 within the ABL.