Development of a High Precision Detection Capability for Recently Added Fossil Fuel CO_2 in the Atmosphere Using ${}^{14}C$

J.C. Turnbull¹, S.J. Lehman¹, J.B. Miller^{2,5}, W. Peters^{2,5}, J. Southon³, R.J. Sparks⁴, and P.P. Tans⁵

¹INSTAAR Laboratory for AMS Radiocarbon Preparation and Research, University of Colorado, 1560 30th St, Boulder, CO 80309-0450; 303-735-6611, Fax: 303-492-6388,

E-mail: jocelyn.turnbull@colorado.edu

²Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, 80309 3Earth System Science Department, University of California, Irvine, CA 92697

⁴Rafter Radiocarbon Laboratory, Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand ⁵NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO 80305

¹⁴CO₂ provides a direct tracer for recently added fossil fuel CO₂ in the atmosphere. Use of this method has been limited in the past by the precision of ¹⁴C measurements. However, unlike other methods (e.g., CO and SF₆), ¹⁴CO₂ measurements are not confused by biases. In order to utilize this method, we have developed the ability to measure ¹⁴CO₂ to 2‰ precision, equating to ~1 ppm detection of fossil fuel CO₂ on air samples of 3-6 liters. We use cryogenic extraction of CO₂ followed by graphitization and accelerator mass spectrometry. Repeated measurements on aliquots from a single tank of air show a precision of better than 2‰ at 1σ. Using recent results from Niwot Ridge, Colorado, we compare ¹⁴C, CO, and SF₆ methods for fossil fuel CO₂ detection and show that ¹⁴C provides accurate detection versus the other methods.

Using the TM5 atmospheric transport model, we estimate the global Δ^{14} C spatial distribution (Figure 1). The model predicts a west-east Δ^{14} C signal across the continental United State of ~6‰, easily detectable with our measurement precision. A combination of the ¹⁴C result with other tracers will thus allow us to separate fossil fuel and biological CO₂ contributions across the United States.

Figure 1. $\Delta^{14}C$ (‰) in the annual mean surface layer simulated using the TM5 transport model. Fossil fuel emissions, set at 7 GtC (representing estimated 2005 emissions), are spatially distributed according to population, and emissions are seasonally varying (30% peak to trough amplitude). Simplifications (no stratospheric ¹⁴C reservoir and ocean disequilibrium flux is spatially uniform) bias the absolute $\Delta^{14}CO_2$ values but not the spatial gradient over the continents.