Uncertainty Analysis of CO₂ Standard Transfer in CMDL from 1979 to 2004

C. Zhao 1,2

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309;
303-497-6444, Fax: 303-497-6290, E-mail: Conglong.Zhao@noaa.gov
²NOAA, Climate Monitoring and Diagnostics Laboratory, Boulder, CO 80305

At present, state-of-the-art, nondispersive infrared (NDIR) analyzers offer the most precise method of CO_2 detection. However, this technique requires very accurately calibrated standard gases. On the basis of the World Meteorological Organization (WMO) CO₂ Expert Meeting in 1975, the CO₂ standards are classified as WMO primary, secondary, tertiary, and working standards according to intended use. The primary standards are used to assign precise CO2 concentration values to the secondary standards maintained by each country as national standards. From 1979 through 2000 the CMDL secondary standards were calibrated by the Scripps Institution of Oceanography (SIO) against the WMO primary standards approximately every 3 years. From mid-1996 to 2001, the assigned CO₂ values of the primaries have been jointly based on the SIO and the CMDL manometric measurements and completely on the CMDL manometric measurements alone from 2001 to present. The secondary standards are transferred via NDIR analyzers to all other reference gas tanks used routinely for measuring atmospheric CO₂ concentrations in the CMDL cooperative air sampling network, the CMDL tall tower sites, and at the CMDL observatories. In this presentation the uncertainties for each reference tank calibration by NDIR analyzers against the secondary standards from 1979 to present are evaluated. Figure 1 shows the calibration uncertainties are about 0.03 µmol mol⁻¹ from September 1979 to March 1986, 0.007 µmol mol⁻¹ from April 1986 to August 2000, and 0.01 µmol mol⁻¹ from September 2000 to present. On the basis of these analyses the total measuring uncertainties versus the WMO primary standards in the CMDL air sampling network, the CMDL tall tower sites, and the CMDL observatories are estimated. These estimates can be considered as the upper limit of the precisions to measure atmospheric CO₂ concentrations during the period.

Figure 1. Uncertainty of CO_2 calibration by NDIR for each reference tank is shown by a plus. The red line indicates a weekly average of uncertainties. Triangles show the total yearly calibrations from 1979 through 2004.