Conversion of NOAA Atmospheric CH₄ Mole Fractions to a Gravimetrically-Prepared Standard Scale

<u>E.J. Dlugokencky</u>¹, R.C. Myers², P.M. Lang¹, K.A. Masarie¹, A.M. Crotwell^{1,3}, K.W. Thoning¹, B.D. Hall¹, J.W. Elkins¹, and L.P. Steele⁴

¹NOAA Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80305;

303-497-6228, Fax 303-497-6290, E-mail: Ed.Dlugokencky@noaa.gov

²NOAA National Institute of Standards and Technology, Gaithersburg, MD 20899

³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309

⁴Division of Atmospheric Research, Commonwealth Scientific and Industrial Research Organization,

Melbourne, Australia

Sixteen gas mixtures were prepared using a gravimetric technique to define a CH₄ standard gas scale covering the nominal range 300 to 2600 nmol mol⁻¹. This scale, which has been accepted by the community of experts within the Global Atmosphere Watch program as the WMO X-CH₄ scale, is designed to cover a range of measurements for methane in air extracted from glacial ice through contemporary background conditions. All standards were prepared in passivated, 5.9-L high-pressure aluminum cylinders. Methane dry-air mole fractions were determined by gas chromatography with flame ionization detection (FID), where the repeatability of the measurement is typically better than 0.1% (≤ 1.5 nmol mol⁻¹) for ambient CH₄ levels. Once a correction was made for 5 nmol mol⁻¹ CH₄ in the diluent gas, the scale was used to verify the linearity of our FID over the nominal range 300 to 2600 nmol mol⁻¹. The gravimetrically prepared standards were analyzed against the existing CMDL CH₄ scale (Figure1, top panel), and they give CH₄ mole fractions that are a factor of (1.0124 ± 0.0007) greater than the old NOAA scale. In the bottom panel of Figure 1, residuals are plotted from a straight line fitted to the measurements, where different symbols represent different preparation techniques. All CMDL measurements of atmospheric CH₄ will be adjusted to this new scale.

Figure 1. (Top) Plot of prepared gravimetric value for each standard versus the CH_4 mole fraction determined relative to the CMDL scale. The intercept is -4.8 ± 1.1 nmol mol⁻¹ and the slope is 1.0124 ± 0.0007 . (Bottom) Residuals of the fit in (a) plotted with different symbols for each preparation method: squares are tube expansion method; circles are tube flush method; and triangles are direct dilution method.