Preliminary Constraints on Fossil-fuel CO₂: Comparison of Tracers ¹⁴CO₂, CO, and SF₆

J.C. Turnbull¹, J.B. Miller^{2,3}, S.J. Lehman¹, R.J. Sparks⁴, J. Southon⁵, and P.P. Tans²

¹Institute of Arctic and Alpine Research, University of Colorado, Boulder 80309-0450; 303-735-6611; E-mail: Jocelyn.Turnbull@colorado.edu

²NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO 80305

³Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder 80309

⁴Rafter Radiocarbon Laboratory, Lower Hutt, New Zealand

⁵University of California, Irvine 92697

 CO_2 derived from the combustion of fossil fuels is a significant component of the atmospheric carbon budget. Accurate estimates of the fossil fuel source are essential to determining the biological CO_2 flux accurately. However, traditional estimates based on economic inventories are unlikely to be accurate on the sub-continental spatial scales and sub-annual time scales of interest in biological flux studies.

We compare three fossil fuel CO₂ tracer methods (¹⁴CO₂, CO, and SF₆) at two North American locations (Niwot Ridge, Colorado, and New England) as shown in Figure 1. We derive the boundary layer biological CO₂ contribution (C_{bio}) from the boundary layer – free troposphere CO₂ gradient, correcting for the fossil fuel CO₂ contribution. The direct tracer ¹⁴CO₂ does not suffer from the potential biases associated with the indirect tracers CO and SF₆ and is expected to provide accurate detection capability. In comparison, the SF₆ method shows significant variability at these sites. The CO method is more consistent, but shows a seasonally coherent bias, underestimating fossil fuel CO₂ emissions in winter and overestimating in summer. The bias in the CO-based approach has implications for its planned use as a fossil-fuel tracer in the atmospheric components of the North American Carbon Program.

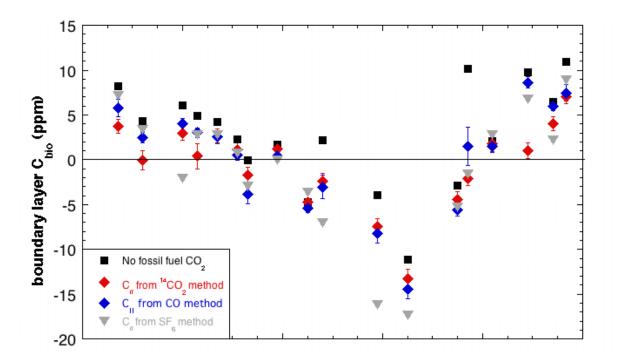


Figure 1. Biological CO_2 contribution in the boundary layer over Massachusetts, as determined using fossil fuel CO_2 ($C_{\rm ff}$) estimates derived from each tracer method.