

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA

Federal Office of Meteorology and Climatology MeteoSwiss

Global Atmosphere Watch Activities at Empa

Jörg Klausen¹ GAW QA/SAC Switzerland

C. Zellweger¹, S. Henne¹, A.F. Ilahi², C. Siregar², Herizal², M. Mimouni³, M.S. Ferroudj³, J. M. Kariuki⁴, J.O. Aseyo⁴ and B. Buchmann¹

¹Empa, Laboratory for Air Pollution/Environmental Technology, CH-8600 Dübendorf, Switzerland

²Meteorological and Geophysical Agency, Global GAW Station Bukit Koto Tabang, Bukittinggi, Sumatera Barat, Indonesia

³Office National de la Méteorologie, Tamanrasset, Algeria

⁴Kenya Meteorological Department, Dagoretti Corner, Ngong Road, Nairobi 00100, Kenya

NOAA ESRL Annual Meeting, Boulder (CO), 14-15 May 2008

Outline

- GAW at Your Fingertips
 - The GAW Station Information System
- It's the Quality, Stupid!
 - WCC-Empa
- Researching High
 - The Global GAW Station Jungfraujoch
- Mind the Gap, Please!
 - Twinning with Algeria, Indonesia, Kenya

Federal Department of Home Affairs FDHA

Federal Office of Meteorology and Climatology MeteoSwiss

GAW at Your Fingertips

The GAW Station Information System (GAWSIS)

Scope of GAWSIS

- Integration of information across all (GAW) variables
- Search and discovery across all variables
- 'Clearing house' for identification of GAW stations
- Direct link to data across WDCs
- Increased visibility of GAW and partner programmes
- 1-stop shop for information about the ground-based GAW network(s)

SAWSIS 'defines' the GAW ground-based observational network GAWSIS is a precursor for a *GAW DA*ta *P*ortal

New in GAWSIS (1/2)

New in GAWSIS (2/2)

Linking (W)DCs with GAWSIS

GAWSIS-WDC Integration: Status May 2008

WOUDC

- Metadata intake fully operational
- WDCGG
 - Metadata intake operational
 - Almost complete
- WRDC
 - Status of some sites unclear
 - Data not easily accessible
- WDCA
 - Metadata intake operational
 - very few parameters covered
- WDCPC
 - Not quite operational
 - Integrate Regional DCs?

Federal Department of Home Affairs FDHA

Federal Office of Meteorology and Climatology MeteoSwiss

It's the Quality, Stupid!

World Calibration Centre for Surface Ozone, Carbon Monoxide and Methane

GAW Quality System

Surface Ozone Upgrade of SRP Ensemble

Original SRP design

- biases due to temperature gradients and multiple reflections in the absorption cells (Viallon et al., Metrologia 43 (2006) 441– 450)
- Improved design
 - new lamp block
 - absorption cells with optically sealed windows at 3 degree angles (@METAS together with NIST, and SRP#14, #18, #26)
- Activities
 - Upgrade of SRP#15 and #23
 - Re-certification against GAW (NIST) and Swiss (METAS) ozone reference
- Result
 - small changes (0.1-0.2 %) of SRPs
 - reduced uncertainty

Carbon Monoxide

Resolving Scale Issues

- Internal inconsistency / non-linearity of CO scale no longer a problem
- Status of transfer of scale to stations somewhat unclear
- Documentation / legacy data at WDCGG is an issue that will be addressed next

CO Field Instrument Inter-Comparison at JFJ

- Comparison of NDIR, GC, and VURF techniques
- Good agreement between techniques
- All instruments are able to detect fast changes in mixing ratios
- NDIR (Horiba instrument) performs well at averaging intervals > 10 minutes

C. Zellweger et al. (in preparation)

Audit Barrow

WCC-Empa (9 - 12 March 2008)

General Remarks

- Situated 8 km east of Barrow (small town / community with complete infrastructure)
- Large number of ongoing measurements and cooperative programs
- New station building planned (2009)
- Both permanent positions vacant (station manager Dan Endres will leave in summer, operator Teresa Winter left in February)
- First audit by WCC-Empa (2nd audit at a NOAA site)
- O3
 - Instrument in calibration
 - Inlet could be improved
- CO
 - Instrument in calibration (bias < 2%)
- CH4
 - Instrument in calibration (bias ~0.1%)

joerg.klausen@empa.ch -- NOAA ESRL Annual Meeting, Boulder (CO), 14-15 May 2008

Bundesamt für Umwelt BAFU

Materials Science & Technolog y Air Pollution / Environmental Technology

Gas Observations at Jungfraujoch

		Recommended for GAW	Jungfraujoch	funding
Greenhouse gases	CH₄	P		NABEL (BAFU, Empa)
	N ₂ O	Ø		NABEL (BAFU, Empa)
	CFC	ø		SOGE (Empa, BAFU)
	HCFC, HFC		P, P	SOGE (Empa, BAFU)
	SF ₆			NABEL (BAFU, Empa)
	CO ₂			University of Berne
Reactive gases	O ₃	Ø		NABEL (BAFU, Empa)
	СО			NABEL (BAFU, Empa)
	SO ₂			NABEL (BAFU, Empa)
	NO, NO ₂ , NO _y	ø, ø, ø	P, P, P	NABEL (BAFU, Empa)
	voc	ø		NABEL (BAFU, Empa)
	PAN, HNO ₃ OVOC, H ₂	Ø, Ø,	campains campains	Empa, IACETH NABEL (BAFU, Empa) Empa

World-first measurements of ,Kyoto' gas HFC-365mfc at Jungfraujoch

VOCs and OVOCs at Jungfraujoch

Ethane new 2008
Propane new 2008
Acetylene new 2008

Isoprene

Terpenes

DMS

Formaldehyde campaign

Acetonitrile

Methanol campaign Ethanol campaign

Acetone campaign

Benzene continuous

Toluene continuous

Iso-/n-Butane continuous

Iso-/n-Pentane continuous

-Acetaldehyde campaign

95% of VOCs in summer / 83% in winter

MEDUSA, launched at Jungfraujoch in February 2008

cold head 1
HFCs
CFCs
SF₆
C₂F₆
VOC

cold head 2

In cooperation with AGAGE, SCRIPPS, University Bristol

Mind the gap, please!

Twinning partnerships with Algeria, Indonesia, Kenya

Three Partners in three Developing Countries

Topography

Assekrem, 2710 m a.s.l., 1355 m a.m.g.

Difference between 'real' and 'model' station elevation

Colorscale: 1 km x 1 km Contour: 1 ° x 1 °, ECMWF

Global GAW stations

Assekrem

ASK: NOAA flask and in situ

Global Atmospheric Circulation & ITCZ

January

July

Assekrem: Trajectory Clustering

FLEXTRA, 10-day backward, 4 hourly start, Period: 2001 – 2006 Residence times: Grayscale: all altitudes, Colored: below 2000 m AGL

Bukit Koto Tabang

- O3
 - Deposition dominant during night
 - Mixing in from troposphere during day
- CO
 - Dilution with free tropospheric air during day

Bukit Koto Tabang: Trajectory Clustering

FLEXTRA, 10-day backward, 4 hourly start, Period: 2000-01 – 2007-12 Residence times: Grayscale: all altitudes, Colored: below 2000 m AGL

Trajectories in SEE and SE Cluster

Representative sample

Bukit Koto Tabang: Trajectory Clustering

Mt.Kenya

MKN (hourly aggregates)

Trajectory Clustering: Mt. Kenya

FLEXTRA, 10-day backward, 4 hourly start, Period: 2002-06 – 2006-06 Residence times: Grayscale: all altitudes, Colored: below 2000 m AGL

Trajectory Clustering: Mt. Kenya

- Clear monsoon pattern
 - NIO, NA in winter
 - SA, SIO in summer
- EA all year
- High CO
 - from northerly clusters (winter)
 - biomass burning (summer)
- Low O3 in Oct/Nov
 - Passage of the ITCZ

Conclusions

- GAWSIS excerts a ,structuring' influence on GAW, defining the ground-based network and unifying the WDCs.
- CO scale issues largely resolved, but work remains to (re)establish traceability of legacy and current observations.
- Improvements of SRP have reduced the uncertainty of ensemble realization of ozone reference.
- Jungfraujoch (JFJ) helps to identify European emission sources as well as global trends.
- Empa (and others) are working on narrowing remaining gaps in the global ground-based network with some success.
- Maintaining basic operations, capacity building and sustainable knowledge transfer remain a huge challenge.

