Assessing terrestrial ecosystem responses to climate change from analysis of the shape and amplitude of the atmospheric CO₂ seasonal cycle

Cynthia Nevison¹, Pui-Yu Ling², Jim Randerson², and Pieter Tans³

¹NCAR/University of Colorado, INSTAAR, ²University of California, Irvine, ³NOAA ESRL Global Monitoring Division

NOAA ESRL 2008 Global Monitoring Annual Conference

Wednesday, May 14, 2008

Barrow, Alaska CO₂: Detrend with polynomial

BRW Mean CO₂ Seasonal Cycle

BRW: Apply Filter to Deseasonalized Residuals

High Frequency Residuals

significantly correlated among Arctic stations

R=0.54 (brw v. mbc); R=0.44 (brw v. alt); R=0.49 (alt v. mbc)

Sort High Frequency Residuals by Month

BRW: Summary of Monthly CO₂ Trends

BRW Changing Shape of Seasonal Cycle

BRW Change in Amplitude

Slope of Cmax-Cmin Residuals v. Year

Monthly CO₂ Trends at 4 Arctic Stations

Arctic 5-Station Composite

Niwot Ridge: Trends in CO₂ Seasonal Cycle

North Pacific Islands 5-Station Composite

Correlation between composite N Pacific and Arctic high frequency residuals

Source regions from Transcom basis functions

Barrow, Alaska (BRW): 71.3N, -156.6W, 11m

Source regions from Transcom basis functions

Mauna Loa (MLO): 19.53N, -155.58W, 3397m

MATCH Transport Runs with NEE from Two Terrestrial Ecosystem Models

MATCH:CLM-CN and CASA' Transport Runs

high frequency residuals from both ecosystem models correlated to obs

CASA'-MATCH Arctic Composite

High Frequency Residuals: Intra-annual correlations of June v. other months (each square represents one year from 1982-2004)

Obs Arctic June High Frequency Residuals plotted vs. all other months

Niwot Ridge June High Frequency Residuals plotted vs. all other months

Conclusions

- 1. Significant increases in amplitude at 5 Arctic stations ~ 10% over 25 years
- 2. Most likely reflects a terrestrial ecosystem response, although transport may also contribute
- 3. CASA' and CLM-CN Ecosystem models in part reproduce these trends, although not necessarily for the right reasons.

CO₂ Seasonal Amplitude Trends at 4 Arctic Stations

Monthly Trends at 4 NH Midlatitude Stations

Arctic 8-Station Composite

Niwot Ridge CO₂: 40.0N, -105.6W, 3523m

Niwot Ridge: Trends in CO₂ Seasonal Cycle

Source regions from Transcom basis functions

Carr (CO): 40.90N, -104.8W, 3000m (using as analog for Niwot Ridge (CO): 40.0N, -105.6W, 3523m)

MATCH Fossil Fuel Simulation

high frequency residuals not correlated to observations

