
Measurements of Ambient Mercury and Related Species at the Mauna Loa Observatory 2002-2008

L. Alvarez-Aviles¹, M.S. Landis¹, D. Kuniyuki² and A. Colton^{1,2}

¹U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711; 919-541-3330, E-mail: Alvarez-Aviles.Laura@epamail.epa.gov ²NOAA Earth System Research Laboratory, Mauna Loa Observatory, Hilo, HI 96720

EPA ORD and NOAA ESRL initiated measurements of gaseous elemental mercury (Hg⁰), divalent reactive gaseous mercury (RGM), and particulate bound mercury (Hg(p)) in 2002 at the Mauna Loa Observatory (MLO). Collocated elemental carbon, O_3 and SO_2 measurements were subsequently initiated in 2004. NOAA ESRL O_3 data was used to complete our data set from 2002 - 2004. Hg⁰ concentrations ranged between 0.3 and 2.9 ng m⁻³, and average \pm standard deviation was 1.6 \pm 0.5 ng m⁻³; Hg(p) concentrations ranged between 1 - 1900 pg m⁻³, and RGM ranged between 0.6 - 360 pg m⁻³. Periods when Hg(p) is anti-correlated to Hg⁰ are also periods when ozone is anti-correlated to Hg⁰ (2002 - 2003), suggesting that air masses sourcing ozone differ from that of Hg⁰, possibly of stratospheric origin. The majority of SO₂ impacting Mauna Loa is expected to be of volcanic origin. SO₂ correlation with Hg⁰ suggests that we observed significant Hg⁰ during periods of volcanic activity, while anti-correlated to Hg⁰, suggesting that most Hg⁰ observed at MLO is of anthropogenic sources and is mostly correlated to Hg⁰, suggesting that most Hg⁰ observed at MLO is of anthropogenic origin. This study is still in early stages of data analysis and validation, a complete presentation of the data and detailed analysis will be presented.

Figure 1. Hg⁰, HgP, RGM, ozone, SO₂ and black carbon concentration trends in Mauna Loa, Hawaii in 2002 – 2008. The solid thick lines represent the monthly average and the lighter solid line is the 3 hour resolution measurement for the chemical specie.