Global Distribution of CO₂ in Mid Troposphere from the Atmospheric Infrared Sounder (AIRS) Measurements Suggests Greater Cross Equator Exchange

Y.L. Yung¹, R.L. Shia¹, X. Jiang², M.C. Liang³, K.F. Li⁴, L. Kuai⁴, M. Chahine⁵, E.T. Olsen⁵ and L. Chen⁵

¹Division of Geological and Planetary Sciences, California Institute of Technology, 150-21 Caltech, Pasadena, CA 91125; 626-395-6940, E-mail: yly@gps.caltech.edu
²Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204
³Research Center for Environmental Changes, Academia Sinica, Nankang, Taipei 115, Taiwan
⁴Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

The Atmospheric Infrared Sounder (AIRS) enables us to monitor the global distribution and transport of middle tropospheric CO_2 over oceans, land and the poles (Chahine et al., 2008). Mid tropospheric CO_2 retrieved by AIRS shows a substantial spatiotemporal variability that is supported by aircraft flash sampling measurements (Matsueda et al., 2002; Machida et al. 2008). These data can be used to constrain the cross equator exchange of CO_2 . The uncertainties in the cross equator exchange of CO_2 affect the reliability of the estimations of the CO_2 sources and sinks in both hemispheres (Tans et al., 1990 and Fan et al., 1998). We use the Caltech/JPL 2-D chemistry and transport model (Shia et al., 2006) to simulate the mid troposphere CO_2 . The model is used to calculate the cross equator transport of CO_2 . Preliminary results indicate more inter-hemispheric transport than that implied by the ground-based data. Implications for CO_2 abundance and distribution in the southern hemisphere are discussed.

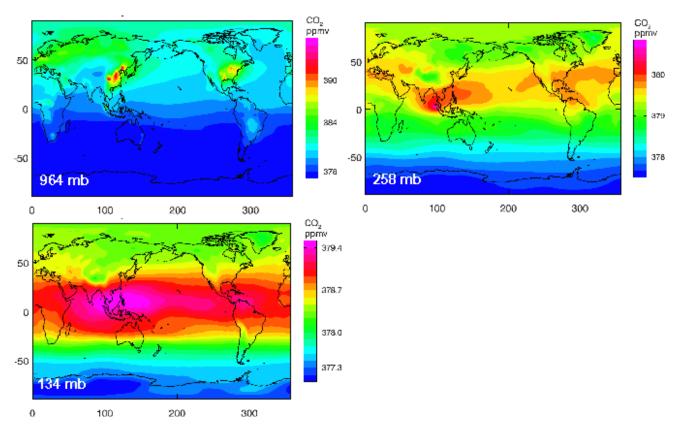


Figure 1. CO, distribution simulated from MOZART. Three levels (964mb, 258mb and 134mb) are shown.