

PFC emissions from Australian & global aluminium production

Paul Fraser, C. Trudinger, B. Dunse, P. Krummel & P. Steele

CSIRO Marine and Atmospheric Research: Light Metals Flagship

SIO: J. Mühle, P. Salameh, R. Weiss & C. Harth MIT: A. Ganesan, R. Prinn NOAA ESRL: B. Miller Hydro Aluminium: P. Reny

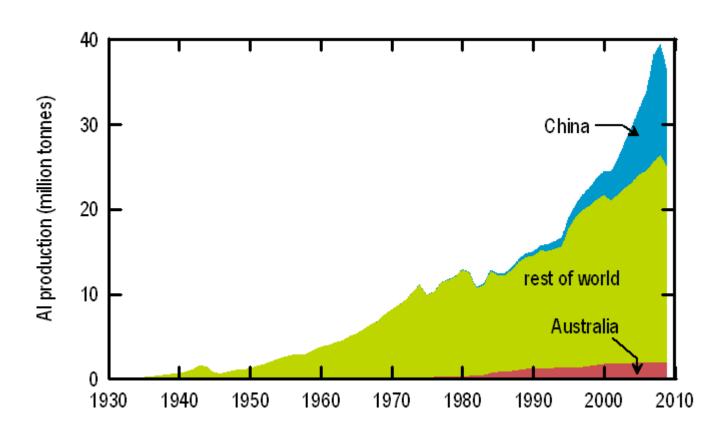
National Research

FLAGSHIP

2009 ESRL Global Monitoring Annual Conference Boulder, Colorado, 13 - 14 May 2009

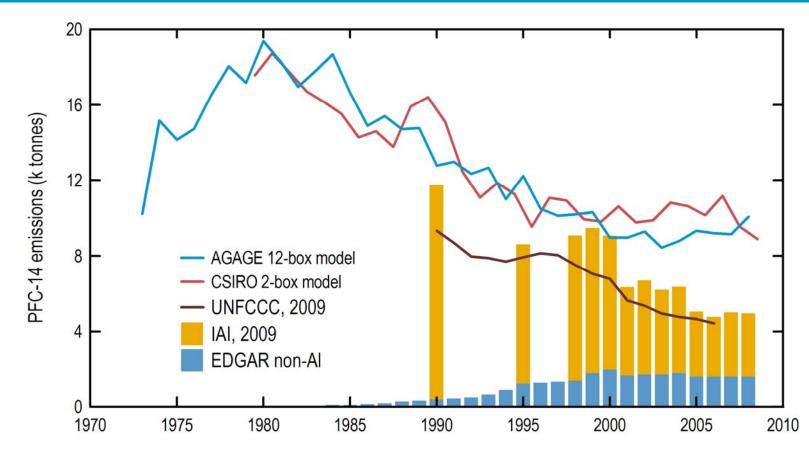
Perfluorocarbons (PFCs) from aluminium production

PFCs (CF₄, C₂F₆) are released to the atmosphere from aluminium production (during anode events) & by the electronics industry (plasma etching, cleaning etc)


- normal operation: $2AI_2O_3 + 3C \rightarrow 4AI + 3CO_2$
- anode event (AE): Na₃AlF₆ + nC \rightarrow (CF₂)_n \rightarrow CF₄, C₂F₆.... typical AE frequency: 0.2-1.5 per cell per day (150-300 cells/smelter)
- typical AE duration: 2 minutes
- Al₂O₃ feed control technology critical in determining anode event frequency

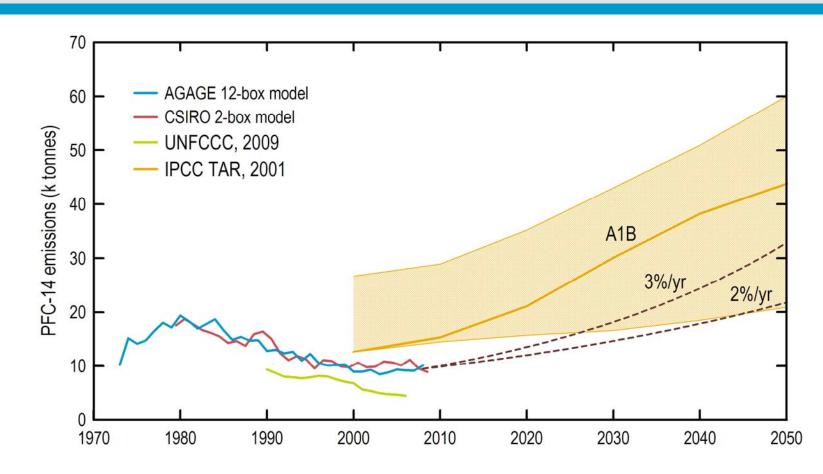
Direct CO₂-e emissions from aluminium smelting: 2-4 tonnes CO₂-e/tonne AI

- PFCs account for ~20%
- CO₂ from anode consumption accounts for 65%, CO₂ from anode baking 15%
- CO₂-e emissions from electricity generation: 14-19 tonnes CO₂/tonne AI (coal)


Global aluminium production (IAI 2009, ABARE 2009)

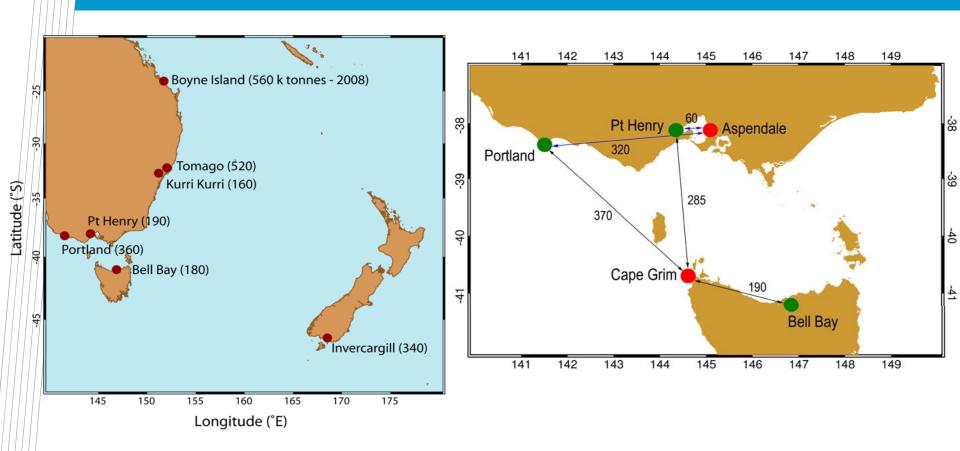
- Global aluminium production 2009 will likely decline 9% from 2008
- Significant zonal change (Europe, N. America \rightarrow Asia) in PFC emissions pattern
 - 1990: Asia 5%, EU, N. America 50%; 2007: Asia 40%, EU, N. America 25%

PFC-14 (CF₄) emissions from atmospheric observations

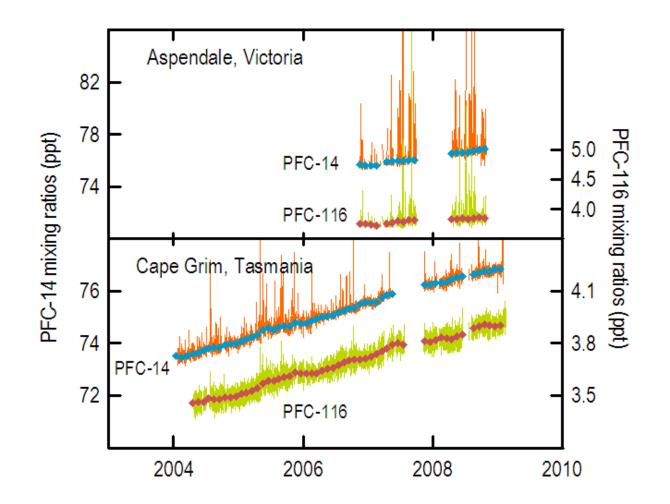


UNFCCC data: 40% of aluminium smelting in countries not reporting to UNFCCC

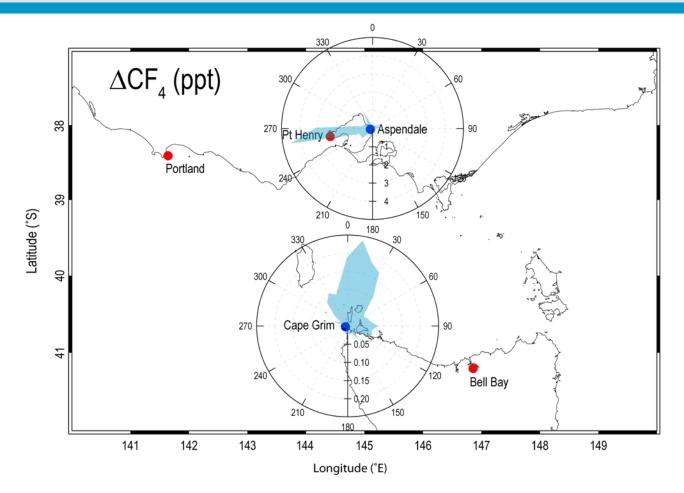
- CF₄ emissions (UNFCCC Tier 2) from aluminium, electronics: ~50% of global emissions
- Missing CF₄ source(s)?


Future global PFC-14 (CF₄) emissions

CF₄ emissions set to rise again: unlikely to follow the current IPCC scenarios
industry estimates & IPCC scenarios are 50% lower,100% higher than actual emissions

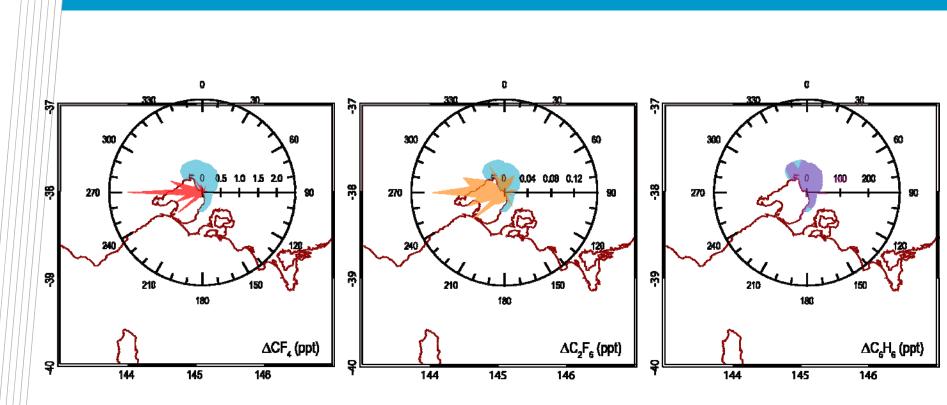

Australia/NZ smelters & AGAGE PFC monitoring sites (Cape Grim, Aspendale)

- Australian/NZ smelters: 2.3 M tonnes aluminium/year, 6% of global production
- Portland/Pt Henry/Bell Bay: 0.8 M tonnes/year, 40% of Australia's production
- PFC plumes (Portland, Pt Henry & Bell Bay) observed regularly at Cape Grim & Aspendale


PFC observations at Cape Grim & Aspendale

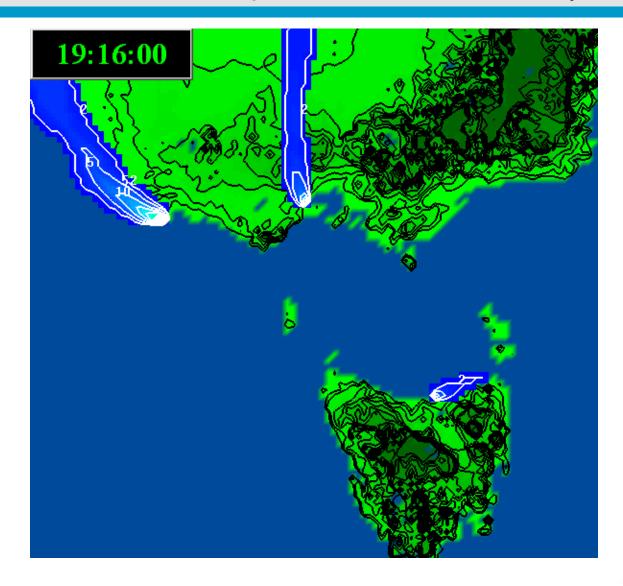
PFC-14 ~1%/year (2%/year above background); PFC-116 ~3%/year

CF₄ enhancements above 'baseline' at Cape Grim & Aspendale

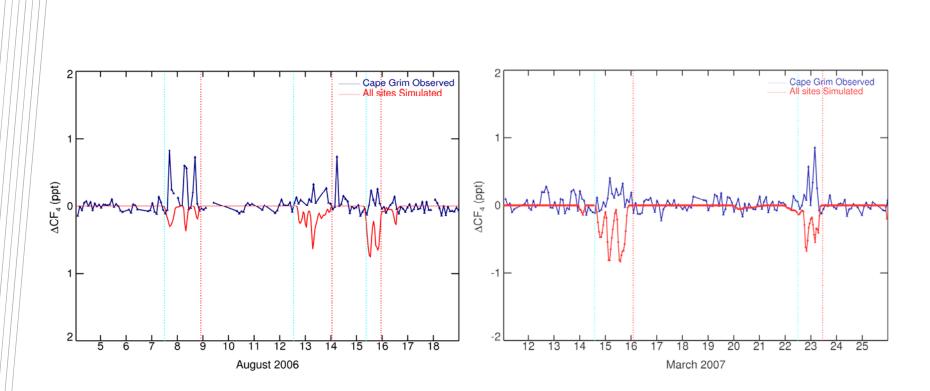


PFC 'events' at Aspendale embedded in clean westerlies

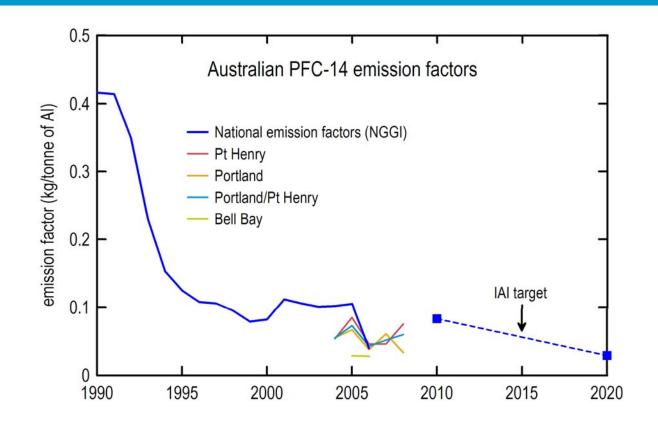
PFC 'events' at Cape Grim embedded in polluted (by Melbourne) northerlies


PFC-14, PFC-116, benzene enhancements at Aspendale

C₂F₆/CF₄ mass emission ratio: 0.10±0.03 (IPCC 0.12±0.01)
No CHF₃ emissions observed



PFC plumes from Portland, Pt Henry and Bell Bay smelters: TAPM 3D transport model simulation May 2004


PFC-14 pollution events at Cape Grim: observed & modelled

 Model CF₄ annual emissions from Portland/Pt Henry/Bell Bay smelters scaled to match observations

Australian PFC-14 emission factors (kg CF₄/tonne AI)

- Significant technology changes in early 1990s and 2005/2006
- IAI targets: EF reductions from 1990 by 2010 (80%) and by 2020 (93%)

Kurri Kurri smelter, Hydro Aluminium, Hunter Valley, NSW

Time-integrated air samples collected from exhaust stack line

PFC, CO₂ & other emissions at Kurri Kurri, April 2008

concentration		CF ₄	C_2F_6	C ₃ F ₈	COS	HF	CO ₂
		ppt	ppt	ppt	ppm	ppm	ppm
Kurri Kurri	pot line exhaust	16300	250	44	2.4	3.1	4920
	pot line shed	130	8.3	1.1	0.002		416
	smelter ambient	81	4.2	0.6	0.001		383
Cape Grim	Apr 2008	77	3.8	0.5	0.001		382

emission factors		CF ₄	C_2F_6	C ₃ F ₈	COS	HF	CO ₂
			t/tonne Al				
Kurri Kurri		18	0.43	0.10	63	30	0.96
SE Australian smelters		53	5.3				
IAI (PFPB, CWPB)	3	38-64	4.5-7.7				1.59
NGGI (2006)		40	5				1.59

Conclusions

- global CF₄ emissions peaked in the 1980s at close to 20 k tonnes per year, then declined & stabilised at 10 k tonnes per year since the early 2000s
- bottom-up estimates of emissions from the aluminium (IAI) and electronics (EDGAR) industries underestimate total current CF₄ emissions by a factor of 2
- UNFCCC underestimates global CF₄ emissions because 40% of aluminium producing countries do not report to UNFCCC
- global CF₄ emissions set to rise again, but unlikely to follow IPCC-TAR scenarios (100% higher than actual emissions)
- aluminium smelter PFC emissions & emission factors can be derived from strategically located atmospheric monitoring stations or by exhaust gas sampling at smelters
- aluminium smelters emit at least 3 PFCs: CF₄, C₂F₆, C₃F₈, but no HFCs, c-C₄F₈?
- at Kurri Kurri, the exhaust gas extraction system collects >95% of PFCs produced
- in 2006 Australian aluminium smelters emitted ~120 tonnes PFCs (800 k tonnes CO₂-e) and 3100 k tonnes CO₂ (PFCs: 20%) (\$27M @ \$25/tonne C)
- Australian smelters should meet the 2010 IAI target for reduced emission factors
- the 2020 target presents a significant challenge for aluminium producers

CSIRO Marine and Atmospheric Research

Paul Fraser Chief Research Scientist

Phone: +61 3 9239 4613 Email: paul.fraser@csiro.au Web: www.csiro.au/group

This paper is dedicated to the memory of Derek Cunnold – thank you

Contact Us

Phone: 1300 363 400 **or** +61 3 9545 2176 **Email:** Enquiries@csiro.au **Web:** www.csiro.au

A new method for determining PFC emission factors

$$\Delta$$
PFC = PFC (downwind) – PFC (upwind)

$$\Delta CO_2 = CO_2$$
 (downwind) – CO_2 (upwind)

 E_{PFC} = $k_{PFC} * \Delta PFC$

 $\mathsf{E}_{\mathsf{CO2}} = \mathsf{k}_{\mathsf{CO2}} * \Delta \mathsf{CO2}$

since the sources of CO₂ & PFCs are co-located, $k_{PFC} = k_{CO_2}$, therefore

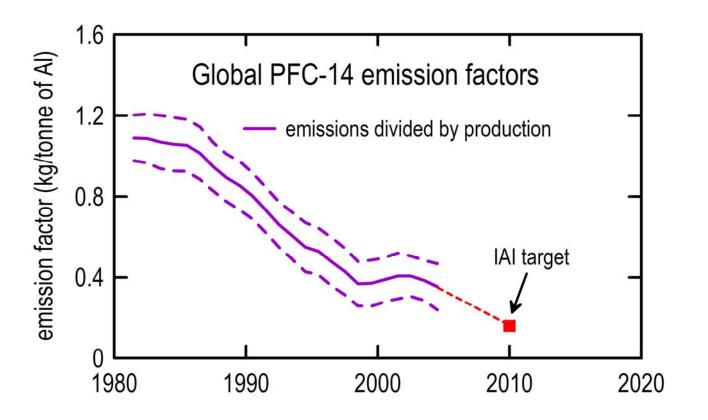
 $E_{PFC}/E_{CO_2} = \Delta PFC/\Delta CO_2$

$$E_{CO_2} = f_{CO_2} * P_{AI}$$
, $E_{PFC} = f_{PFC} * P_{AI}$, therefore

 $E_{PFC}/E_{CO_2} = f_{PFC}/f_{CO_2}$

 $f_{PFC} = f_{CO_2} * \Delta PFC / \Delta CO_2$

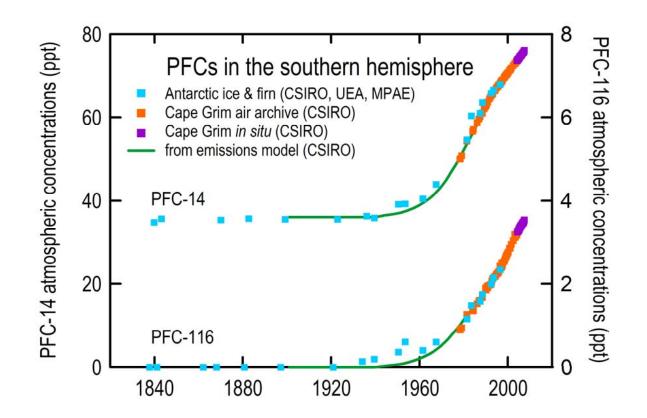
• Δ PFC, Δ CO₂ can be measured directly, f_{CO₂} is a well constrained factor, therefore f_{PFC} can be estimated



Emission factors for SE Australian smelters: 2004-2008

	Emission factor (kg/tonne Al) (n)						
Smelter	PFC-14	PFC-116					
Pt Henry	0.071±0.035 (59)	0.013±0.006 (18)					
Portland	0.055±0.027(18)						
Bell Bay	0.032±0.016 (8)						
All	0.053±0.026 (85)						
National average 2004-2005 (NGGI)	0.106	0.014					

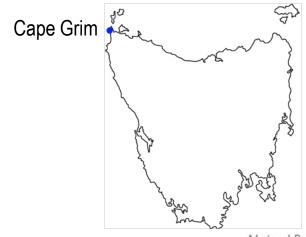
Global PFC-14 emission factors from global PFC emissions and aluminium production



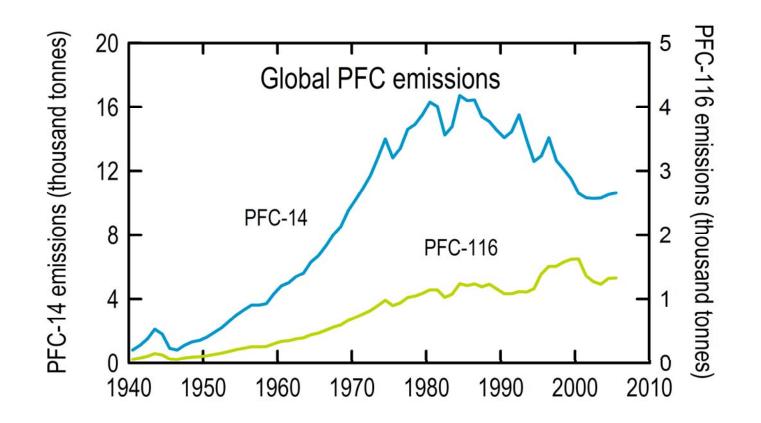
1980s emission factor 1.1 kg PFC per tonne of AI

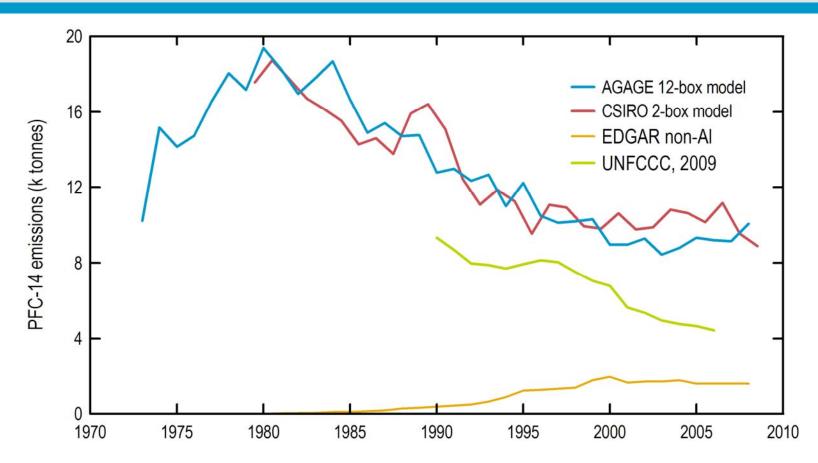
current factor 0.35 kg PFC per tonne of Al

PFCs in the southern hemisphere

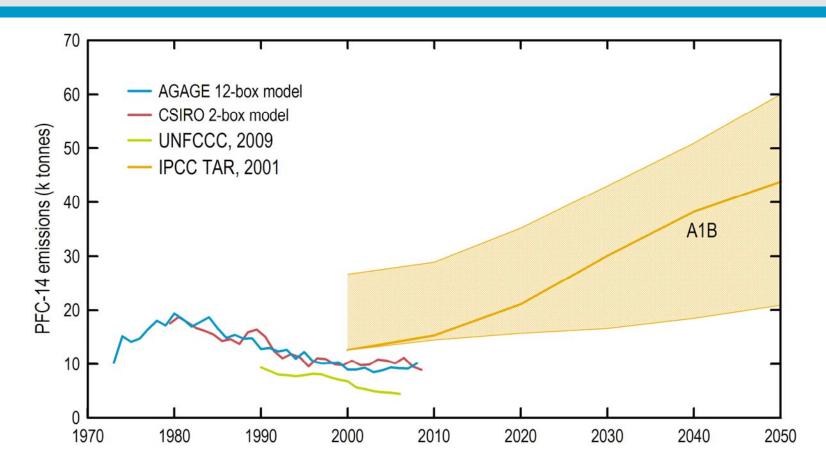

- PFC-14 concentration doubled since aluminium first produced
- PFC-14 growth rate slowed after 1980
- PFC-116 first appeared in the atmosphere in the 1930s

Cape Grim, Tasmania (40° 41' 00" S; 144 ° 41' 22" E)



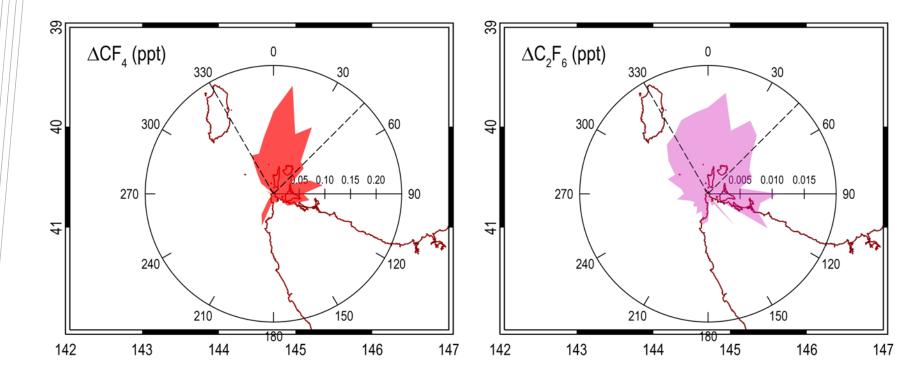

Global PFC emissions from atmospheric observations using inverse modelling

- PFC-14 emissions peaked at 16.7 k tonnes mid-1980s and stabilised at 10.3 k tonnes in the early 2000s.
- PFC-116 emissions reached 1.5 k tonnes in the early 2000s.


PFC-14 emissions from atmospheric observations

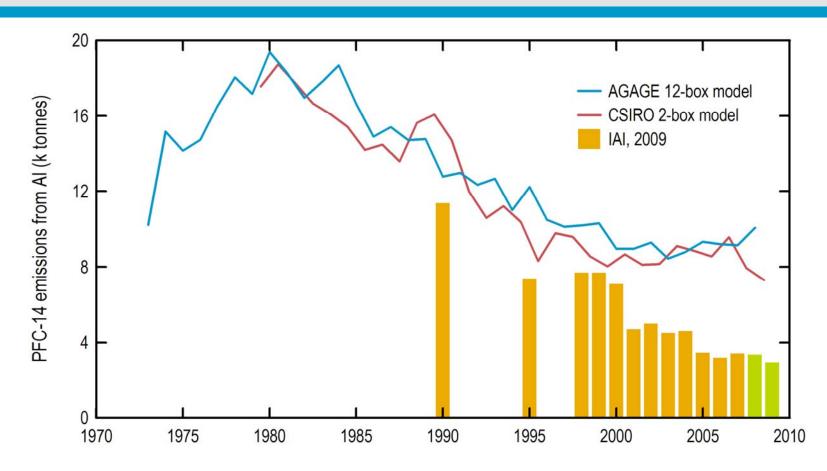
- Emissions calculated by inverse methods from AGAGE in situ and archive data
- UNFCCC data: 40% of AI smelting in countries not reporting to UNFCCC
- PFC-14 emissions from AI smelting: subtract EDGAR non-AI emissions

Future global PFC-14 emissions



PFC-14 emissions set to rise again?

Unlikely to follow the current IPCC scenarios


PFC-14, PFC-116 enhancements at Cape Grim

north	0.14±0.06
east	0.13±0.08

Global PFC-14 emissions from aluminium smelting

- Emissions from atmospheric data are now significantly higher than those obtained from the IAI Anode Effect Survey (May 2009)
- Has the IAI Anode Effect Survey captured the emissions from China?

PFC-14 (CF₄) annual emissions & emission factors

Aluminium production (k tonnes)		2005	2006	2007	2008	2004-2008
Bell Bay	162	174	176	176	176	864
Portland	355	346	340	358	358	1757
Pt Henry	192	187	190	190	190	950
Pt Henry/Portland	546	534	530	548	548	2707
All	708	707	707	725	725	3571

CF₄ annual emissions (tonnes)

Bell Bay		5	5			25±14
Portland	19	23	13	22	12	90±37
Pt Henry	10	16	9	9	14	58±19
Pt Henry/Portland	30	39	23	29	41	161±53
all	39	48	28	36	39	191±41

CF₄ emission factors (kg/tonne)

Bell Bay		0.03	0.03			0.03±0.02 (8)
Portland	0.06	0.07	0.04	0.06	0.03	0.05±0.02 (47)
Pt Henry	0.05	0.09	0.05	0.05	0.08	0.06±0.02 (68)
Pt Henry/Portland	0.06	0.07	0.04	0.05	0.08	0.06±0.02 (36)
all	0.06	0.07	0.04	0.05	0.05	0.05±0.01 (159)
Australia NGGI	0.10	0.11	0.04			

