

Validation of Six Years of Mid-Tropospheric AIRS CO₂

Edward Olsen¹, Moustafa Chahine¹, Luke Chen¹, Xun Jiang², Thomas Pagano¹ and Yuk Yung³

¹ Science Division, Jet Propulsion Laboratory, Caltech
 ² Department of Earth & Atmospheric Sciences, Univ. of Houston
 ³ Division of Geological & Planetary Sciences, Caltech

NOAA/ESRL Global Monitoring Conference, May 13-14, 2009

Copyright 2009 California Institute of Technology Government sponsorship acknowledged

- ♦ AIRS Mid-Tropospheric CO₂ Averaging Kernels
- Aircraft profiles of CO₂ concentration
 Direct validation of satellite retrievals
- ♦ CONTRAIL CO₂ samples at altitudes 10.5 km to 12.5 km
 ➔ Validate amplitude, phase of seasonal variations and interannual trends as function of latitude
- TCCON daytime cloud-free column average CO₂ measurements
 - Validate phase of seasonal variations and interannual trends; allows estimation of drawdown in PBL

♦ Conclusions♦ A little dessert

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

AIRS Sensitivity

- Peak sensitivity altitude varies slightly with latitude and season:
 - Tropics: 285 hPa
 - Poles: 425 hPa
- Width at half-maximum is ~ 400 hPa, spanning:
 - Tropics: 120 hPa to 515 hPa
- Poles: 235 hPa to 640 hPa
- Tails of averaging kernels intrude into stratosphere, where air is older than in troposphere by an amount that varies with latitude (~ 1 yr in tropics; ~5 yrs at poles).
 - Impact: 1-3 ppm near the poles.

Representative AIRS Mid-Trop CO₂ Averaging Kernels

♦ Direct validation of satellite retrievals

- Ideal characteristics:
 - ✓ Spiral flight path
 - ✓ Altitude range from near surface to 150 hPa (13.5 km)
 - ✓ Coincide with the satellite overpass

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder **Aircraft Profiles**

are Best Available Validation

 Convolve the aircraft profiles with the AIRS sensitivity functions to arrive at a single number to compare to the AIRS result.

•SPURT flights in April 2003:

•Maximum Altitude: 13.7 km •Pressure Range: 850 to 140 hPa •INTEX-NA flights in July 2004: •Maximum Altitude: 10.7 km •Pressure Range: 850 to 240 hPa

•Compared to average of same day AIRS retrievals within 500 km radius.

•GLOBALVIEW flights (multi-year, many): •Maximum Altitude: 8 km •Pressure Range: surface to 360 hPa

 Compare Poker Flats to average UT±4hr AIRS retrievals within 250 km radius.

AIRS CO₂ Validation via **Aircraft CO₂ Profiles**

Atmospheric Infrared Sounder

Contours are NCEP 500 mb geopotential height. Arrows are NCEP 500 mb wind.

Comparison of AIRS CO₂ Collocated with INTEX-NA Aircraft Data

Numbers in parentheses are number of same-day AIRS retrievals collocated within a radius of 500 km which are averaged for comparison to convolved aircraft profile.

40

45

Latitude (deg)

50

375

370

35

CO2 (ppm) 375 370 20 40 60 80 ¹ ongitude (deg) Numbers in parentheses are number of same-day AIRS retrievals collocated within (14) a radius of 500 km which are averaged for comparison to convolved aircraft profile.

O

55

60

7

380

Jet Propulsion Laboratory

Comparison of AIRS Collocated Retrievals California Institute of Technology Pasadena, California With Poker Flats GLOBALVIEW Aircraft Data

8

Jet Propulsion Laboratory California Institute of Technology Pasadena, California With Poker Flats GLOBALVIEW Aircraft Data

Atmospheric Infrared Sounder

Comparison of AIRS Collocated Retrievals

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

CONTRAIL CO₂ Samples at Altitudes Between 10.5 km and 12.5 km

- \Rightarrow Provide a long-term history for 30°S \leq latitude \leq 30°N over the Western Pacific Ocean at an altitude near that of the AIRS sensitivity maximum for the duration of the mission
 - * Validate:
 - **Amplitude and phase of seasonal variations**
 - \checkmark Latitude-dependent interannual trend

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

CONTRAIL Measurements provide long timeline and wide latitude coverage

CONTRAIL flights over ocean between Sidney and Tokyo:

•Cruising Altitude:	10.5 – 12.5 km
•Pressure Range:	240 to 180 hPa
•Latitude Range:	30°S to 30°N
•Longitude Range:	135°W to 153°W
•Flight Periodicity:	~ twice/month
•Sample Spacing:	~ 500 km

- Direct comparison of CONTRAIL flask samples with average of collocated AIRS retrievals.
- Collocated AIRS retrievals are within 250 km radius and 4 hrs of flight.

AIRS CO₂ Comparison to CONTRAIL CO₂ Measurements

Time Series for AIRS CO₂ and CONTRAIL Aircraft Data

(in 10°x10° boxes at extremes of latitude for cruising altitude) AIRS Data are 7-day averages; CONTRAIL data are individual measurements

Seasonal Cycle of AIRS CO₂ and CONTRAIL CO₂

(in 10°x10° boxes at extremes of latitude for cruising altitude) AIRS Data are 7-Day Averages Centered on CONTRAIL Daily Averages

Time Series for Difference of Collocated AIRS CO₂ and CONTRAIL Aircraft Data

(at least 3 AIRS retrievals collocated within 250 km radius & 4 hrs)

Over 5.25 years, bias ~ 0.2 ppm, stdev < 2 ppm and trend difference < 0.015 ppm/yr

PP

14

Difference Between Collocated AIRS CO₂ and CONTRAIL Aircraft Data as a Function of Latitude (at least 3 AIRS retrievals collocated within 250 km radius & 4 hrs)

Over 5.25 years, bias ~ 0.03 ppm, stdev < 2 ppm and no apparent latitude dependence

PDF of Difference Between Collocated AIRS CO₂ and CONTRAIL Aircraft Data

(at least 3 AIRS retrievals collocated within 250 km radius & 4 hrs)

TCCON Daytime Cloud-Free Column Average CO₂ Measurements

 Provide a history of column average CO₂ at widely scattered locations around the globe

- Validate:
 - ✓ Amplitude and phase of seasonal variations
 - ✓ Interannual trend at select locations around globe
 - Allow estimation of seasonal vegetative drawdown of CO₂ in PBL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

Comparison of Averaging Kernels for AIRS Mid-Trop CO₂ and TCCON FTS

AIRS Sensitivity

- Mid-latitude peak sensitivity altitude changes minimally with season:
 - •Summer: 300 hPa
 - 330 hPa •Winter:
- Width at half-maximum broadens slightly in winter, spanning: •Summer: 125 hPa to 515 hPa (390) 150 hPa to 565 hPa (415) •Winter:

FTS Sensitivity

- Kernel is broad peak covering the full atmospheric column; excellent for determining the column average CO₂
- In particular, high sensitivity in the PBL, the location of maximum **CO**₂ variability.
- Data are daytime, clear sky

AIRS daytime data collated within radius of 500km of Park Falls Average of Selected Park Falls Pre-Release Data from Paul Wennberg & Gretchen Aleks

AIRS daytime data collated within radius of 500km of highest quality Park Falls data taken within ± 2 hours of AIRS overpass

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

Comparison of 7-Day Averages of AIRS Mid-Trop CO₂ and Daily TCCON FTS

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Infrared Sounder

Validation of AIRS CO2 Growth Trends

		in situ	AIRS	AIRS – in situ
	Time Series	Rate/std	Rate/std	Rate
		ppm/yr	ppm/yr	ppm/yr
AIRS	60S-60N (1/03 – 12/08)		2.02 ± 0.08	
CONTRAIL	30S-30N (1/02 – 12/07)	2.01 ± 0.04	1.98 ± 0.05	-0.03
CONTRAIL	$25S \pm 5^{\circ} (1/02 - 12/07)$	1.98 ± 0.05	2.07 ± 0.03	+0.09
CONTRAIL	$25N \pm 5^{\circ} (1/02 - 12/07)$	1.96 ± 0.14	1.96 ± 0.08	+0.00
Shemya	53N (1/02 – 12/07)	1.97 ± 0.40	2.03 ± 0.11	+0.06
Sand	28N (1/02 – 12/07)	1.91 ± 0.21	1.96 ± 0.09	+0.05
Ascension	8S(1/02 - 12/07)	2.05 ± 0.04	1.98 ± 0.03	-0.07
Mauna Loa	20S (1/02 – 12/08)	1.94 ± 0.12	1.95 ± 0.01	+0.01
Crozet	46S (6/02 – 12/07)	1.95 ± 0.03	2.17 ± 0.05	+0.22
Macquarie	54S (1/02 – 12/07)	1.98 ± 0.03	2.11 ± 0.07	+0.13

Summary of growth rates per year and the differences between AIRS and several in situ measurements

 Jet Propulsion Laboratory California Institute of Technology Pasadena, California

 Atmospheric
 Infrared Sounder

Beta Testing

Motivation:

Accurate carbon flux estimation from inversion needs far more CO₂ observations than current surface obs can provide.

Goals:

Generate global CO₂ map every 6-hours; start with AIRS then GoSat

Propagate AIRS CO₂ in both horizontal and vertical direction through data assimilation and transport model

Assimilate AIRS Level 2 CO₂ with Ensamble Kalman Filter into CAM 3.5

Eugenia Kalnay (UMCP), Junjie Liu and Inez Fung (UC Berkeley)

Single CO₂ Analysis Step

350 hPa CO₂ analysis increment (ppm) CO

CO₂ at 00Z01May2003 (+3hour) after QC

- Analysis increment= analysis-background forecast
- Spatial pattern of analysis increment follows the observation coverage.
- Propagate observation information horizontally.

Eugenia Kalnay (UMCP), Junjie Liu and Inez Fung (UC Berkeley)

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Atmospheric Infrared Sounder

CO₂ Difference between CO₂ Assimilation Run and Meteorological Run

- Adjustment by AIRS CO₂ spans from 800hPa to 100hPa 1.
- 2. The adjustment is larger in the NH

Eugenia Kalnay (UMCP), Junjie Liu and Inez Fung (UC Berkeley)

Conclusions

AIRS middle tropospheric CO₂ long term trends and seasonal variations are consistent with *in situ* measurements over different spatial, temporal scales for latitude range 30°S to 80°N with standard deviation better than 2 ppm

- AIRS CO₂ retrievals are valuable as a tracer to study concentration, distribution and transport of CO₂ in the free troposphere and validate coupling of the atmospheric physics and dynamics in chemistry transport models
- Need more high-quality *in situ* validation measurements
 There are ~5,000 radiosonde launches/day
 Desire 10% (500) CO₂ profiles/day around the globe
 Require Southern Hemisphere expanded coverage
 Expanded TCCON network; high latitudes of NH & SH

- Mid-troposphere (Completed) 2002 to present Accuracy of 1 - 2 ppm
- Stratosphere (2009)
- Near-Surface (2010)