

Regional Estimates of CH₄ and N₂O Emissions from Central California

NOAA-ESRL-GMD 20090424

M.L. Fischer, C. Zhao, A. Andrews, L. Bianco, E. Dlugokencky, J. Kofler, J. Eluszkiewicz, C. MacDonald, T. Nehrkorn,

Acknowledgements: J. Bogner, E. Crossen, E. Kort, B., J. Lin, C. Potter, W. Salas, T. Szegvary, P. Tans, S.C. Wofsy

This work is supported by the California Energy Commission's Public Interest Environmental Research program and NOAA Office of Global Programs

Outline

- Overview of California's GHG Emissions
- The California Greenhouse Gas Emission Measurement Project (CALGEM)
 - Tall-tower CH₄ and N₂O Measurements
 - WRF-STILT meteorology and footprints
 - Estimated CH₄ and N₂O emissions
- Design of a Regional GHG Emissions Measurement Network
- Conclusions

California GHG Emissions

- CA assembly bill AB-32 mandates reduction to 1990 levels by 2020
- Non-CO₂ GHG emissions comparable to CO₂ but...
 - Largely from biological sources and not readily metered
 - Uncertainties in inventories are large
- Atmospheric inverse approaches provide independent
- Evaluation of uncertainties is an essential challenge

JMTC02E

20

20

15

10

2004 CA non-CO2 Emissions

CEC, 2006; USEPA, 2007

Walnut Grove CH₄ and N₂O

- Seasonal cycles due to changing emissions and mixed layer depth
- CH₄ and N₂O share similar patterns (both dominated by valley emissions)

Fall-Winter (Oct - Dec, 2007) WGC 91 m, Well Mixed, 1400 Local

a priori CH₄ Flux Maps

- Crop Agriculture (Salas)
- Landfill (point sources)
- Livestock (USDA)
- Natural gas dist./use
- Petroleum refining and use
- Wetlands (Potter et al.)
- Above sum to CA-specific
- EDGAR3.2 (1x1degree)
 - Landfills and petroleum extraction and refining ~ 2 x CA estimates
- Also: regional subdivision for spatial analysis

WRF-STILT Footprints for WGC Tower

- WRF meteorology:
 - Nested grids (40,8,1.6 km)
 - NARR boundary forcing
 - Hourly averaged fields
- Example of average footprint for Oct-Dec, 2007 (from hourly maps)
- Largest surface influences (purple) for Bay Area and Central Valley
- Predict CH₄ signal =
 F_{CH4} * footprint +
 Marine Background

Uncertainty Estimates

 In all cases, estimate error in underlying variable and propagate through model to expected error in predicted - measured signal difference

Summary:

- PBL errors ~ 25 %
- Background error ~ 15 %
- Wind errors ~ 10%
- Emissions aggregation ~8 %
- Others ~ 8%
- Quadrature sum ~ 32%

Measured and Predicted CH₄ and N₂O

- 91 m Walnut Grove measurements
- Select well mixed periods using CH₄
 - 91 and 483 m
 CH₄ agree to 100 ppb
- Flask N₂O are subset on same periods

Predicted vs. Measured CH₄ By Season

- Large scatter ~ consistent with estimated uncertainties and emissions model error
- CH₄ emissions appear underestimated in CA inventory for all periods studied

Measured and Predicted N₂O

- N₂O flask data is sparse compared to in situ CH₄
- Slopes and estimated emissions vary with season
 - Fall 07 near unity: emissions not far off
 - Other seasons: slope ~
 1/2, suggesting emissions
 ~ 2 x Edgar inventory

Estimated CH₄ Emissions (MMT CO_{2equiv})

- Baysian estimate of scaling factor for each emission source or region (a priori errors assigned at 30%)
- Source analysis: only livestock significantly different from prior (x 1.6 ± 0.15)
- Region analysis:
 - only regions near WGC tower have errors reduced
 - regions 7 & 8 are larger than prior, consistent with source analysis

Measurement Network Design

- Estimate effect of seven (3 valley, 4 costal) tower network
- WRF-STILT footprints show predicted regional coverage for Oct, 2007
- Psuedo-data generated from footprints, inventory CH4 emissions, and 32% random noise as estimated above
- Regional inverse estimates of posterior scaling factors show reduction in uncertainties for most regions

Conclusions

- Careful attention to uncertainties essential for quantitative emission inventory assessment
 - Measurement errors are now small compared to other sources
- Meteorological uncertainty assessment requires multiple measurement sites and methods (e.g., wind profilers, tracer gases)
- Initial inverse estimates suggest:
 - CH₄ emissions underestimated in Central CA Valley region
 - N₂O emissions also underestimated but vary significantly with season
- Even tall-tower measurements in valley appear to only constrain ~ 100-200km region surrounding tower (483 m height decouples)
- Network of towers required to capture regional emissions from California