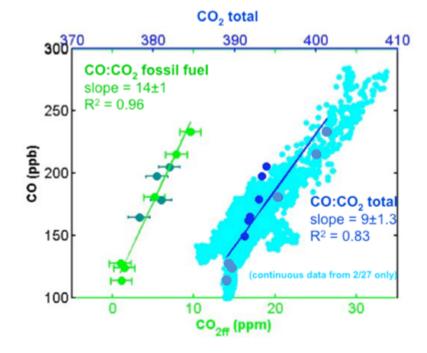
Atmospheric Observations of Carbon Monoxide (CO) and Fossil Fuel CO₂ Emissions from a Medium Sized City: Sacramento, California

J. Turnbull¹, A. Karion², M. Fischer³, C. Sweeney², I. Faloona⁴, T. Guilderson⁵, S. Lehman², J. Miller² and P. Tans¹


¹NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305; 303-497-4836, E-mail: Jocelyn.turnbull@noaa.gov

²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 ³Lawrence Berkeley National Laboratory, Berkeley, CA 94720

⁴University of California at Davis, Davis, CA 95616

⁵Lawrence Livermore National Laboratory, Livermore, CA 94550

Accurate measurement of recently added fossil fuel carbon dioxide (CO₃ff) in the atmosphere is needed not only to quantify CO₃ff emissions, but also aids in understanding emissions of other anthropogenic trace gases. We use measurements of the radiocarbon content of atmospheric CO₂ (Δ^{14} CO₂) to determine recently added CO₂ff in flask samples taken by aircraft over and downwind of Sacramento, California on February 27 and March 6, 2009. We determine the CO to CO₂ff emission ratio from the flask measurements as 14 ± 1 ppbCO/ppmCO₂ff (figure 1). Our results support the bottom-up inventory estimate of 15.4 ppbCO/ppmCO,ff obtained from the CEPAM (CO) and Vulcan (CO₂ff) databases for the Sacramento region. However, if total CO₂ enhancement is assumed to represent CO₂ff in the urban plume, the CO:CO₂ ratio is much lower (figure 1), and would have suggested lower overall CO emissions. We use the ¹⁴C-derived CO:CO ff emission ratio to obtain a high resolution CO₃ff record from continuous CO observations made on the February 27, 2009, flight. Comparison with total CO₂ mole fraction, also measured continuously in the same flight, shows that while CO₂ff emissions dominate the CO₂ variability in the Sacramento plume, they are not sufficient to explain all of the CO₂ variability, indicating some contribution from biospheric CO₂ (CO₂bio) exchange. Furthermore, within the Sacramento plume, a positive CO, bio flux is observed, indicating net respiration and/or biofuel use. Conversely, CO₃bio is negative outside the urban plume, indicating net photosynthetic uptake in the rural Sacramento Valley. In a second flight, on March 6, 2009, the same type of analysis, using only the flask samples, shows that CO₂bio within the city was negative.

Figure 1. Relationship between CO_2ff (green symbols, bottom axis) and CO, and between total CO_2 (blue symbols, top axis) and CO. Flask measurements are the large circles, with the different shades indicating the two flights. The small, light blue circles are continuous measurements made on February 27, 2009. The lines are the best fit to the combined datasets, and the slopes are the obtained CO:CO₂ff or CO:CO₂total emission ratio.