

Radiocarbon (¹⁴CO₂) traces fossil and biogenic components of total CO₂

John B. Miller, Scott Lehman, Steve Montzka, Pieter Tans, Colm Sweeney, Ben Miller, Lloyd Miller, Jocelyn Turnbull, Chad Wolak, John Southon

Fossil Fuel and $\Delta^{14}C$ IPCC 95th %ile!

By definition, ¹⁴C absent from fossil fuels => $\Delta_{\rm ff}$ = -1000 per mil

¹⁴C is an excellent tracer for fossil fuel emissions

NHA+CMA 'Footprint' (From Flexpart/GFS)

Vertical Profiles Show Anthropogenic Influence near surface.

- High Values of: CO2, CO, HFC134a
- Low Values of ¹⁴CO₂

East Coast CO₂ and Δ^{14} C (NHA + CMA)

$$C_{obs} = C_{bg} + C_{fos} + C_{bio}$$

$$(\Delta C)_{obs} = (\Delta C)_{bg} + (\Delta C)_{fos}$$

PBL and Free Troposphere CO and HFC134a

 $C_{obs} = C_{bg} + C_{net_source}$

Correlating tracers with *total* CO₂ doesn't work.

m=?? ppb/ppm m=6.0 ppb/ppm

m=?? ppt/ppm m=1.7 ppt/ppm

m=?? ppt/ppm m=0.5 ppt/ppm

m=?? ppt/ppm m=11 ppt/ppm

Red=Summer; Blue=Winter

 No summer correlation due to biospheric uptake of CO₂.

Correlating tracers with ¹⁴CO₂ (C_{ff}) does work.

m=19 ppb/ppm m=12 ppb/ppm

m=11 ppt/ppm m=4.1 ppt/ppm

m=1.7 ppt/ppm m=1.3 ppt/ppm

m=14 ppt/ppm m=23 ppt/ppm

Red=Summer; Blue=Winter

 Winter correlation is also biased due to biospheric release.

Fossil fuel CO₂ emissions inventories are known better than any other.

m_{gas} x E_{ff}

 $\mathsf{E}_{\mathsf{gas}}$

USA* Emission Estimates

*This assumes that NE ratios are valid nationally.

Time dependent emission ratios show seasonality and hints of trends.

•Because we are subtracting a background values, we can plot each measurement as a ratio.

•This allows for the possibility of each ratio being connected to an individual back trajectory/footprint.

800 ¹⁴CO₂ measurements could give you ~5% uncertainty on *monthly* Fossil CO₂ emissions

-This is a simulated result (OSSE) using a regional Lagrangian model. How well could we retrieve a coarse version of the Vulcan Inventory?

Conclusions

- ¹⁴CO₂ enables the separation of biogenic and fossil CO₂
- Fossil CO₂ correlates well with many other anthropogenic tracers
- Emissions estimates for these tracers show some surprising magnitudes and seasonality
- Eventually, calculating fossil CO₂ will enable atmospheric 'top-down' calculation of fossil emissions.