

Network for the Detection of Atmospheric Composition Change: Tracking Changes in the Earth's Atmosphere

Complementarity with GRUAN for Water Vapor Trends Detection

IE 21

Michael J. Kurylo, GEST/UMBC NOAA/ESRL Global Monitoring Conference Boulder, CO; 18-19 May 2010

http://www.ndacc.org/

How Do NDACC and GRUAN Differ?

NDACC is a set of more than 70 high-quality remote-sensing research stations for

NDACC

- detecting trends in overall atmospheric composition; understanding impacts on stratosphere/troposphere
- establishing links and feedbacks between climate change and atmospheric composition
- NDACC is not a climate-monitoring network per se

 GRUAN is the GCOS Reference Upper Air Network and aims to

- provide the foundation for long-term data sets that can be used to reliably monitor and detect emerging signals of global and regional climate change
- Contribute to satellite validation, mesoscale meteorology

ALL BOARD OF ATMOSPHERIC COMPOSITION OF ATMOSPHE

NDACC Guidance Can Be Helpful in GRUAN Formulation

GRUAN need not reinvent the wheel

o draw on capabilities of established high-quality networks

- e.g., sites, infrastructure, ancillary measurements (Table Mountain Facility, Mauna Loa, & possibly Lauder within NDACC)
- augment these capabilities as needed to provide key climate variables on a global scale

GRUAN should leverage experience from the NDACC Working Group structure

o with its emphasis on measurement accuracy & precision

- the build-up phase of GRUAN is better supported by an instrumentspecific organization

- migrate towards a parameter-specific focus once instrument characterization is mature

- o include early engagement of the satellite community
 - validation enables patching of long-term datasets

Instrument Working Group Functions

Measurement Quality Control

- Protocol Development
 - Instrument-specific Performance Requirements
 - Calibration & Validation
- o Recommendations on Proposed Affiliations
- o Intercomparison Campaigns
 - Instruments & Algorithms
 - Decisions on Common Basis Parameters
 - Satellite Cal/Val

Data Reporting and Archiving

- o Adherence to Data Protocol
- o Archiving Formats
- Consistency in Reporting the Same Quantity
 - Important in utilizing measurements from existing networks

♦ TCCON Guidance – A Success Story

Parameter / Species Working Group Functions

Assess Various Measurement Techniques

- Accuracy and Precision
- Operating Procedures for Different Sensor Types
- o Future Potential
- Calibration / Validation for Multiple Techniques
 - Best practices for data comparison or satellite validation
- o Retrieval Aspects
 - Basis parameter issues

♦ Building a Homogeneous Dataset

- Combining and Merging Different Datasets
- o Development of Trends

2005: Inception of NDACC Working Group on Water Vapor

Aim: Investigate, in detail, various aspects of H₂O measurements

- Accuracy of Different Sensor Types
 - in situ (balloon and aircraft) radiosondes, frost point and Lyman-α hygrometers, ...
 - remote sensing FTIR, Raman and DIAL lidars, microwave radiometers, solar and star occultation sensors, …
- Calibration Issues
- Spectroscopic Issues
- Retrieval Aspects volume mixing ratios, number density, averaging kernels, altitude resolution, ...
- Synergy of Combining and Merging Data Obtained by Different Techniques
- Validation and Campaigns

NDACC Measurement Capabilities http://www.ndacc.org/

Altitude

Ripples indicate approximate vertical resolution. Plain bars represent column measurements

The MOHAVE 2009 Campaign Measurements of Humidity in the Atmosphere and Validation Experiments

JPL-Table Mountain Facility, California (October 11-27, 2009)

Participating Water Vapor Instruments:

- 3 water vapor Raman lidar (JPL & GSFC) [0-20 km]
- 16 CFH launches (JPL & GSFC) [0-30 km & total column]
- 4 Frost-point Hygrometer (FPH) launches (NOAA) [0-30 km & total column]
- 58 RS92 launches (JPL & GSFC) [0-30 km & total column]
- 2 improved water vapor radiometers (NRL & Univ. Bern) [20-80 km]
- 1 FTIR (JPL) [total column]
- 2 GPS receivers (GSFC & JPL/NOAA) [total column]

Other measurements:

- Stratospheric ozone lidar (JPL & GSFC) [0-30 km]
- Tropospheric ozone lidar (JPL) [3-12 km]
- ECC ozonesondes (JPL, GSFC, & NOAA) [0-30 km]

Theory/Modeling:

NDACC

- MIMOSA PV: Forecast and Analysis of PV (JPL, CNRS)
- MIMOSA-CHIM UT/LS: Forecasts and Analysis of H2O and cirrus (CNRS)

additional details in poster

Water Vapor Monitoring Capabilities: NDACC Raman Lidar vs. GRUAN Balloon-Borne Sensors

Simulated Increases in Atmospheric Water Vapor During the 21st Century

Largest increases are expected in tropical UT

~1%/year increase over the next century

These increases extend to +/- 30 degrees of latitude

For climate monitoring, the focus should be on the UT (150 -250 hPa)

Original GRUAN Priority 1 Measurement Requirements

Variable	Temperature	Water Vapour	Pressure
Priority (1-4)	1	1	1
Measurement Range	170 – 350 K	0.1 – 90000 ppmv	1 –1100 hPa
Vertical Range	0 – 50 km	0 to ~30 km	0 – 50 km
Vertical Resolution	0.1 km (0 to ~30 km) 0.5 km (above ~30 km)	0.05 km (0 – 5 km) 0.1 km (5 to ~30 km)	0.1 hPa
Precision	0.2 K	2% (troposphere) * 5% (stratosphere)	0.01 hPa
Accuracy	0.1 K (troposphere) 0.2 K (stratosphere)	2% (troposphere) * 2% (stratosphere)	0.1 hPa
Long-Term Stability	0.05 K*	1% (0.3%/decade) *	0.1 hPa
Comments	*The signal of change over the satellite era is in the order of 0.1–0.2K/ decade (cf. section 3.1), therefore long-term stability needs to be an order of magnitude smaller to avoid ambiguity	*Precision, accuracy and stability are relative with respect to mixing ratio	Source: GCOS - 112

For some variables, such as upper-tropospheric and lower-stratospheric water vapour, the ability to monitor to the specified requirements may not immediately be possible, although some research instruments show considerable promise.

Requirements for Trends Detection

$$Y = \mu + \omega T + N$$

 μ constant term

 ω trend

T time (months)

Nnoise

$$n^* \approx \left[\frac{3.3 \sigma_N}{|\omega_0|} \sqrt{\frac{1+\phi}{1-\phi}} \right]^{2/3}$$

 n^* the number of years

 ω_0 trend magnitude

 σ_N standard deviation

 ϕ autocorrelation

"the number of years of data required to detect a real trend of specified magnitude with probability 0.90" (Weatherhead et al., JGR 1998)

Number of Years to Detect Trends Using Different Sensors					
Measurement Frequency	GRUAN required sensor	10% sensor	15% sensor		
Daily	18	18	19		
Every 4 days	22	23	23		
Monthly	36	38	39		

The use of a sensor meeting GRUAN requirements yields a small decrease in the time required to detect trends vs. a 10% or 15% sensor The expense of the sensor that can provide 10% accuracy in the UT currently limits its use to once per month at selected sites

Potential Synergy between NDACC Raman Lidar Effort & GRUAN

- RS92 has measurement difficulty in the critical region ~ 200 mb (Miloshevich et al., JGR, 2009)
 - Optimized, relatively inexpensive Raman lidar can reach these altitudes reliably through long-term averaging
- Hybrid product of lidar + corrected RS92 can provide better profile data than radiosondes alone
 - Lidar calibration & stability potentially superior to CFH (CFH error budget 9-10% in UT/LS; Vömel et al., JGR, 2007)
 - Hybrid product is a potential GRUAN reference measurement sufficient for UT trend detection
 - Synergy between GRUAN RS92 sondes & NDACC Raman lidars could provide more frequent climate quality measurements
- GRUAN is considering the use of traveling standards as in NDACC for MOHAVE

What's Next?

- Use lidar water vapor data (CARL, TMF) to characterize noise and autocorrelation
 - Error budget better understood than for sondes
- Simulate effects of calibration jumps / drifts and data gaps
- Establish realistic measurement / calibration requirement for NDACC water vapor lidars
 - NDACC Calibration Workshop (NASA/GSFC: May 17-19, 2010)

Acknowledgements: (i.e., These guys did the work) Dave Whiteman (GSFC) Thierry Leblanc (JPL)

NDACC

Dave Hofmann 1/3/37 – 9/11/09 Scientist Leader Colleague Mentor Friend

