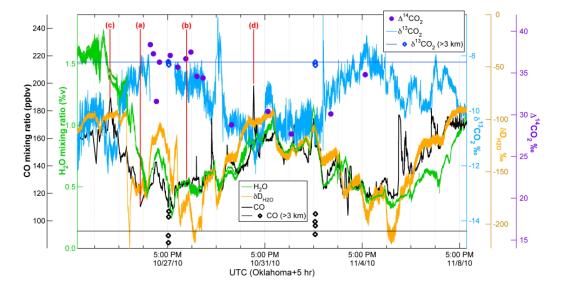
First Deployment of a New Mobile Laboratory for Greenhouse Gas Attribution Studies

<u>R. Bambha¹</u>, H. Michelsen¹, P. Schrader¹, F. Helsel², M.D. Ivey², B.D. Zak², B. LaFranchi³, B. Flowers⁴, T. Rahn⁴, M. Dubey⁴, T. Guilderson³, S. Biraud⁵, M. Fischer⁵, M. Torn⁵ and C. Sweeney⁶

¹Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550; 925-294-3391, E-mail: rpbambh@sandia.gov ²Sandia National Laboratories, Albuquerque, NM 87185


³Lawrence Livermore National Laboratory, Livermore, CA 94550

⁴Los Alamos National Laboratory, Los Alamos, NM 87545

⁵Lawrence Berkeley National Laboratory, Berkeley, CA 94720

⁶Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309

Anthropogenic sources of carbon dioxide (CO_3) represent a significant portion of the global carbon budget, but partitioning CO₂ measurements into their biogenic and anthropogenic sources has been difficult using only measurements of CO₂ abundances and those of a small number of additional tracers. An intensive field campaign was conducted in Fall 2010 at the Atmospheric Radiation Measurement-Southern Great Plains (ARM-SGP) Central facility near Lamont, OK to measure CO₂ and several tracers for its sources using a new mobile laboratory. Two trucks carrying over fifteen instruments for gases and particles were deployed along with a gas-calibration system. Air was drawn into both trucks from a 10-m tall mast. All measurements were made either from a common inlet or closely located inlets. Instruments were selected to provide measurements of tracers of both biogenic and anthropogenic sources. High-frequency measurements of abundances of CO, and its stable isotopologues (¹³CO₂ and C¹⁸OO) were made simultaneously with measurements of CO, SO₂, NO₃, O₃, CH₄, water vapor isotopologues (H₂O, HDO, and H₂¹⁸O), volatile organic compounds, black and organic carbon aerosol, and particle count. Automated flask samplers collected whole air samples for off-line ¹⁴C analysis using accelerator mass spectrometry. Redundancy between CO₂, CH₄, and H₂O measurements provided a valuable crosscheck for the calibrations and the measurements. Good agreement between CO, measurements from four different instruments was attained following careful post-processing and calibrations. Similarly good agreement was demonstrated between four instruments that measured water vapor and two instruments that measured CH₄. The agricultural region that surrounds the ARM-SGP site had experienced little rainfall prior to the campaign, and land cover and crop growth were minimal during the period in which measurements were made (3 October -9 November 2010). Correlations between various tracers and CO₂ provide insight into the different sources, including the anthropogenic component, which includes biomass and fossil fuel combustion.

Figure 1. Time series of δ^{13} C -CO₂, Δ^{14} C-CO₂, δ D-H₂O, H₂O, and CO measured during the campaign. High δ^{13} C and Δ^{14} C are associated with low CO, δ D -H₂O, and H₂O and air from high altitudes. Low δ^{13} C and Δ^{14} C and high CO, δ D-H₂O, and H₂O are associated with air from low altitudes within the past few days.