Linking Carbon Isotopes of Methane to International Standards – Can We Close the Loop on Calibration?

J.P. Winokur¹, S.E. Michel¹, S. Morgan¹, J.B. Miller², S. Lehman¹, B.H. Vaughn¹ and J.W.C. White¹

¹Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309; 303-492-5495, E-mail: winokuj@colorado.edu ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309

The growth rate of the mole fraction of atmospheric methane (CH₄) has varied substantially over time: the last three decades have seen a globally averaged increase of more than 200 ppb, followed by a period of relative stability, and in the last five years, an increase. Understanding the sources and sinks of atmospheric CH₄ will advance our understanding of its variable growth rate and its effect on global climate change. Stable isotopes of CH₄ are a useful means to delineate sources and sinks of atmospheric CH₄. The Stable Isotope Laboratory at CU-INSTAAR has measured carbon isotopes of CH₄ in the NOAA Earth System Research Laboratory, Global Monitoring Division's Cooperative Air Sampling Network since 1998. These data-from a 15-site subset of the NOAA Network—show an overall decrease in d¹³C of atmospheric CH, in the last few years, with a maximum decrease of 0.3‰ amongst the sites. The significance of that observation, as well as the clear detection of trends, require well-calibrated CH₄ standards inter-compared among different laboratories. At INSTAAR, our d¹³C of CH₄ scale is tied to that of UC-Irvine through multiple compressed, whole-air cylinders filled at Niwot Ridge, Colorado. While data show that our scale has remained stable over the last decade, calibration to the primary carbonate standards (NBS-19 and LSVEC) remains a challenge. Although linking whole air standards to primary reference materials has proven difficult, this has been a goal of the atmospheric CH₄ isotope measurement community for some time, and was recently underscored by the International Atomic Energy Agency (IAEA)/World Meteorological Organization Scientific Advisory Group for Greenhouse Gases. Here we discuss the application of a new offline extraction system, developed to measure ¹⁴C of CH, at INSTAAR, but which also allows for higher precision Dual Inlet Isotope Ratio Mass Spectrometer (DI-IRMS) measurements of $d^{13}C$ of CH₄-derived CO₂. INSTAAR's calibration for $d^{13}C$ of CO₂ is strongly tied to the VPDB scale; furthermore this will allow for direct comparison to IAEA carbonate standards. This is a significant step forward for methane isotope calibration at INSTAAR, and will contribute to efforts for worldwide inter-laboratory calibration.

Figure 1. Atmospheric observations (1998—2011) of δ^{13} C of CH₄ from a 15-site subset of the NOAA/ESRL Global Monitoring Division Cooperative Air Sampling Network show oscillations in growth over the last decade and more negative trending over the last 4 years.