Another Step Toward Stratospheric Ozone Recovery as Observed by Multiple Network for the Detection of Atmospheric Composition Change (NDACC) LiDARs and Satellite Instruments

G.G. Kirgis, T. Leblanc and I.S. McDermid

Jet Propulsion Laboratory, California Institute of Technology, Table Mountain Facility, 24490 Table Mountain Rd, Wrightwood, CA 92397; 760-249-4829, E-mail: kirgis@tmf.jpl.nasa.gov

Long-term variability in stratospheric ozone at Mauna Loa Observatory (MLO), Hawaii, Table Mountain Facility, California, Hohenpeissenberg, Germany, Observatoire de Haute-Provence, France, and Lauder, New Zealand, was investigated using various observational records. The analysis comprises a comparison of collocated ozone measurements from several NDACC LiDARs and a long-term time series merged from different satellite instruments. Regression analysis was performed on the deseasonalized monthly mean ozone time series for each 1 km-altitude bin between 20 and 40 km from January 1995 to April 2011 (a period of low volcanic aerosol loading). Among others interannual and annual components, the mid-latitude Ozone Depleting Gas Index (ODGI) was found to significantly improve the regression model. A strong positive response to the ODGI was observed over mid-latitude sites in the upper stratosphere since 2005 as well as a negative response at MLO in the lower stratosphere. Clear signatures of the 11 year Solar Cycle and El Niño-Southern Oscillation (ENSO) were also identified above MLO showing negative response in the lower stratosphere. These responses were already identified by models as a change in tropical upwelling which leads to the strengthening of the Brewer-Dobson circulation and thus to accelerate the process of ozone recovery above mid-latitudes.

Figure 1. MLO LiDAR ozone response to 11 year Solar Cycle (top), ENSO (middle) and ODGI (bottom).

Figure 2. LiDAR ozone responses to the ODGI above four mid-latitudes Network for Detection of Stratospheric Change sites. White lines mark the two steps of ozone recovery (stop of the ozone decrease and start of recovery).