Snapshot of Atmospheric Trace Gases "Pole to Pole" - Highlights from the HIPPO Whole Air Sampler

<u>B.R. Miller</u>¹, F. Moore¹, S. Montzka¹, E. Atlas², J. Miller¹, B. Vaughn³, S. Michel³, J. Winokur³, P. Lang¹, K. Sours¹, C. Sweeney¹, D. Guenther¹, S. Wolter¹, J. Higgs¹, D. Nance¹, R. Lueb², R. Hendershot⁴, X. Zhu², L. Pope², E. Dlugokencky¹, P. Novelli¹, T. Conway¹, P. Tans¹, J. Elkins¹ and S. Wofsy⁵

 ¹NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305; 303-497-6624, E-mail: ben.r.miller@noaa.gov
²Rosenstiel School of Marine Atmospheric Science (RSMAS), Miami, FL 33173
³Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309
⁴National Center for Atmospheric Research, Boulder, CO 80307
⁵Department of Earth and Planetary Sciences and the Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

HIaper **P**ole to **P**ole **O**bservations (HIPPO) mission: "To measure cross sections of atmospheric concentrations approximately pole-to-pole, from the surface to the tropopause, five times during different seasons over a three year period..."

Results from the NOAA/RSMAS whole air flask sampler taken during the HIPPO missions provide an unprecedented snapshot view of ~80 atmospheric trace gas distributions throughout much of the troposphere. A custom air sampling module aboard the Gulf Stream V aircraft was used to sample whole air into stainless steel flasks and glass flask packages. Observed trace gas distributions reflect the combination of transport, chemistry and/or source/sink distributions and are evident across hemispheric scales and through atmospheric regimes that include the open Pacific Ocean and North America and from near-surface (200 m) up to regions of stratospheric influence (14,400 m). The multitude of measured atmospheric compounds, spanning a wide range of lifetimes, growth rates and source/sink distributions, provide insight into chemistry and transport processes.

Figure 1. HFC-134a mole fractions (colorbar in parts per trillion) from the Pacific Ocean North-South transect. Circles represent coordinates of samples collected in NOAA's Carbon Cycle Greenhouse Gases Group's glass flask packages.