

Nitrogen Trifluoride Global Emissions and Emission Factors Estimated from Atmospheric Observations

Tim Arnold ^a, Christina Harth ^a, Jens Mühle ^a, Jooil Kim ^a, Peter Salameh ^a, Alastair Manning ^b, Diane Ivy ^c, and Ray Weiss ^a

^a Scripps Institution of Oceanography, University of California, San Diego, USA.

^b Atmospheric Dispersion Group, UK Met Office, Exeter, UK.

^c Center for Global Change Science, Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, USA.

Background – atmospheric chemistry

NF₃, the greenhouse gas missing from Kyoto

Michael J. Prather¹ and Juno Hsu¹

Received 5 May 2008; accepted 27 May 2008; published 26 June 2008.

[1] Nitrogen trifluoride (NF_3) can be called the missing chemic greenhouse gas: It is a synthetic chemical produced in industrial quantities; it is not included in the Kyoto basket of facility Prather and Hsu, GRL, 2008

- Used a 3D chemical transport model to calculate an atmospheric lifetime as ~550 years (using work of Molina et al., 1995 and Sorokin et al., 1998)
- Calculated a GWP₁₀₀ of 16 800 (using radiative efficiency from Robson et al., 2006)

Reactive and nonreactive quenching of O(¹D)SO₂F₂, NF₃, and SF₅CF₃

Zhijun Zhao^{a,1}, Patrick L. Laine^a, J. Michael Nicovich^b, and Paul H. Wine^{a,b,2}

Zhao et al., PNAS, 2010

- Faster reaction in the stratosphere with O(¹D), also verified by Dillon et al. (2011) leading to a calculated lifetime of ~480 years
- Calculated a GWP₁₀₀ of 16 600

Background - uses

NF_3 as a replacement for C_2F_6 (PFC-116) in CVD chamber cleaning (part of semiconductor production)

NF ₃	Table 3. Typical MMTCE (pe	r µm deposition) v	alues for CVD cl	namber cleans*
Plasm	비용이 관람 생활을 해야 할을 위해야 한다. 이 이 제품은 이 이 이 이용을 가지 않는다. 이 이 제품은 이 이 이 이용을 가지 않는다.	Standard C ₂ F ₆	Optimized C ₂ F ₆	Remote NF ₃
RF/MW power	Applied Materials DxL (TEOS): 200mm [12,15]	34 × 10 ⁻⁹	5 × 10 ⁻⁹	0.04 × 10 ⁻⁹
	Applied Materials DxZ (TEOS): 200mm [16–18]	8 × 10 ⁻⁹	2 × 10 ⁻⁹	0.04 × 10 ⁻⁹
	Novellus Systems Concept-2 (TEOS): 200mm [7, 8]	8 × 10 ⁻⁹	N/A**	N/A
	Novellus Systems Concept-1(TEOS): 150mm [15]	33 × 10 ⁻⁹	16 × 10 ⁻⁹ n/a	N/A
	Applied Materials [13] Ultima (USG): 200mm	N/A	N/A	0.10 × 10 ⁻⁹

From Johnson et al., Solid State Technology, 2000

 NF_3 demonstrated a huge reduction in CO_2 equivalent emissions compared to C_2F_6 and "*It is accepted that most new CVD equipment will be cleaned using* NF_3 chemistry"

Background – atmospheric monitoring

- Atmospheric CF₄ (~80 ppt) is measured with precision of ~0.1% by the "Medusa" GC/MS (Miller et al., 2008)
- Weiss et al. (2008) detected atmospheric NF₃ but they had to go looking for it! Method was extremely consuming in terms of instrument time and personnel time (= expensive).
- 11 samples of air archived from 1977 to 2008 were measured showing NF₃ was growing at a rate of 11% in 2008
- Important to keep measuring and start monitoring

Background – atmospheric monitoring

Problems with measuring NF3:

•Very volatile with b.p. ~-130 C (similar to CF4)

•Low abundance

Poor sensitivity in the mass spec

•Shows non-linear detection with many (useful) chromatographic materials!

Adapted Medusa GC/MS of Miller et al., *Anal. Chem.* (2008) for measurement of NF_3 alongside all the other halogenated species important for studying greenhouse gases and stratospheric ozone depletion.

Background - calibration

- Four separate gravimetric standards were prepared using a standard addition method to account for matrix related issues during measurement
- Relative standard deviation between prepared standards was 0.51% (with an estimated uncertainty of 2%), however, this calibration calculated the atmospheric mole fraction to be 25% greater that that reported by previously.
- The source of the calibration error in 2008 was identified and corrected for (Arnold et al., in press). The two calibrations now agree within 1.4% (typical 1-σ measurement relative precision is 1.5%)
- Additional confidence in our calibration comes from CF₄, which was included alongside NF₃ as a gas to be calibrated.
- The previous SIO-CF₄ scale (see Mühle et al., 2010) and this new calibration differed by only 0.11% which is insignificant given that typical 1-σ measurement precisions are ~0.1%.

In situ measurements

Revised and updated historical record

Bottom-up emission estimates

Supply estimates

Robson et al. (2006) estimated 2.3 kt in 2006 Prather & Hsu (2008) estimated 4 kt for 2008 Fthenakis et al. (2010) estimated 7 kt for 2008 and 4kt for 2006 Maykut & Maroulis pers. comm. (2011) 9.5 kt for 2008

EDGAR v4.2 (Only end-use?) Prior emission estimates + atmospheric measurements Better emissions estimate Better emissions estimate

Top-down emission estimates

Method

Used 2D atmospheric model (AGAGE 12-box) to calculate the sensitivity of atmospheric mole fractions to changes in emissions

Bayesian inversion based on a prior emissions growth rate estimate (Rigby et al., 2010)

Considered uncertainties in the model parameters, measurement error, measurement-model mismatch, uncertainty in calibration, uncertainty in the prior growth data

Results

Top-down emission estimates

Global emission factors i.e. industry wide integrated EM = emissions/supply x 100

Air Products suggests that emission factor from production to end-use in 2009 was <2%

Market share of Air Products was 25%, suggesting the rest of industry had an emission factor of 15%

A few clean players let down by some dirty ones? Or is industry estimating a best case scenario?

Top-down emission estimates

NF₃'s climate benefit

Outlook

NF₃ market

Mccoy, Chemical and Engineering News (2011) "NF3 is still the design basis for chamber cleaning applications and will be for the foreseeable future"

Source: IHS iSuppli Research, February 2011

http://www.isuppli.com/

Outlook

Atmospheric NF₃ projections

In 2011 radiative forcing due to NF_3 was 0.01% of that due to the CO_2 rise since preindustrial times

Current emissions of around 1.2 kt (20 Mt CO_2 -eq / yr), which is 0.06 % of the most recent estimate of global CO_2 emissions due to fossil fuel combustion and cement production

Projected (RCP scenarios) suggest radiative forcing of CO_2 in 2050 to be between 3000 and 5000 Wm⁻²

Outlook

Atmospheric NF_3 monitoring

Bulk supplied by three companies: Air Products, OCI Materials and Kanto Denka

Summary

- Northern Hemisphere (32.9° N 117.3° W) background NF $_3$ now at 1 ppt and growing at ~0.1 ppt yr $^{-1}$
- Global 'top-down' emissions estimated at 1.2 kt in 2011, which equates to nearly 20 Mt CO₂-eq.
- Emissions of NF₃ now probably exceeding C₂F₆ from the electronics industry
- Radiative forcing in 2011 ~0.01% of that due to CO₂
- Emissions in 2011 equate to ~0.06% due to CO₂ (using a 100-yr GWP)
- Data on industry supply estimates suggest an emission factor of ~ 8% which has decreased from 17% in 2005
- We need to start global monitoring

Thanks to...

AGAGE colleagues Peter Maroulis (Air Products) John Langan (Air Products)

Upper Atmospheric Research Program of NASA