

Toward Simultaneous Multi-station Data Pre-processing for Inversions of Greenhouse Gas Emissions and Uptake in California

E. Novakovskaia¹, H.D. Graven², M.L. Fischer³, S. Jeong³, R.F. Keeling² and R.F. Weiss² ¹Earth Networks, Inc., Germantown, MD ²Scripps Institution of Oceanography, University of California at San Diego, CA ³Lawrence Berkeley National Laboratory, Berkeley, CA

Top-Down Assessment of California's Greenhouse Gas Emissions

- With the passage of Assembly Bill-32 (AB-32), the State of California has taken a leading role in GHG regulation by committing to reduce the statewide GHG emissions to 1990 levels by year 2020, a 30% reduction relative to "business as usual."
- In the context of AB-32, GHG emissions are estimated based on a "bottom-up" approach, which involves quantification of industrial, agricultural and land-use activities multiplied by emissions factors (for example, used by the California Air Resources Board).
- Despite providing an essential metric for assessing progress and compliance, the resulting "inventories" are sometimes grossly inaccurate due to incomplete knowledge, compounded errors, and reporting biases.
- The bottom-up approach must be complemented by a "top-down" approach, which takes advantage of direct measurements of changes in GHG abundance downwind of sites of emissions, such as cities, industrial areas, etc.
- The top-down approach requires a **network** of **greenhouse gas measurements** and weather-related information to compute emissions **using inverse modeling**.
- 3-year project started in September 2011 by the team of collaborators: Scripps Institution of Oceanography, Lawrence Berkeley National Laboratory, Earth Networks, Inc.

GHG Sites in California

Rimath Mountains Biorra Storra Nevedo I	skison opport	Granado	ato noticet	Colora
Califo		con Born grano.	Ariz ^{Treeway}	Regularia Rim Con al Sansay
Walnut Grove Sutro Tower	38.27 37.76	-121.49 -122.45		Google eartl
Trinidad Head Scripps Pier Victorville	41.05 32.87 34.54	-124.15 -117.25 -117.29	1	
Madera Tranquility Sutter Buttes Tuscan Butte Mount Wilson	36.63 36.63 39.21 40.26 34.22	-120.01 -120.38 -121.82 -122.09 -118.06		
Caltech	34.14	-118.13		

- Number of GHG sites in California and along its border will be doubled to meet the needs for atmospheric GHG measurements for verification and top-down methodologies
- EN surface weather observations are also used for more accurate representation of local meteorology in the WRF-STILT modeling system

Earth Networks' surface weather sites

Victorville Tower

Selection of New Locations in California

Looking for optimal locations:

5

Sampling towers

Three intakes:

- 1. Two intakes at high point (>80m)
- 2. One more at 50m

Sampling System

Front View

Side View

"Calibration Box"

Level 0 – Raw Atmospheric,

Operational and Metadata

- Level 1 QC applied
- Level 2 Calibrations applied
- ↓ Level 3 Filters applied

Unified data streams for all sites within the network in real-time

Data QC GHG01 : CH4Dry

Variance Filter

SIO CH4 January 2012

Hours with Std. Dev. in CH, > 100 ppb and surrounding 2 hours removed

Most Recent Site - Victorville, CA

GHG39 : CH4Dry

- Leveraging sampling strategy to take mixing ratio measurements at two heights, "well mixed" periods of the day can be identified.
- Night-time spikes at 50m CH₄ are seen at various sites within EN network and are related to local (point) sources based on analysis of correlations with wind direction/speed.

Time of Day Filter – Afternoon vs Early Morning

Afternoon (12-4pm) means at SIO EN obs STILT-EDGAR CH₄ Early Morning (4-8am) means at SIO EN obs STILT-EDGAR CH4

Models need to be improved to represent the night-time boundary layer.

Inversion Methodology: Region Analysis

Following LBNL's approach (Zhao et al., JGR, 2009): *A priori* emission maps from different spatial regions in the domain are linearly scaled by factors λ , to provide *posterior* emissions that are optimally consistent with the tower measurements, *C*, and background air, C_{BG} , and predicted footprints, *f* (*x*, *y*, *z*, *t*). λ_{prior} is the *a priori* scaling factor, typically assumed unity.

$$\frac{\hat{\lambda}}{\hat{\lambda}} = (\underline{K}^T \underline{S}^{-1}_{\varepsilon} \underline{K} + \underline{S}^{-1}_{prior})^{-1} (\underline{K}^T \underline{S}^{-1}_{\varepsilon} \underline{y} + \underline{S}^{-1}_{prior} \underline{\lambda}_{prior})$$

$$\frac{\hat{\lambda}}{\hat{\lambda}} = (\underline{K}^T \underline{S}^{-1}_{\varepsilon} \underline{K} + \underline{S}^{-1}_{prior})^{-1}$$
where:

 X_r - location of the sensor, t_r - Time of measurement C,

$$y = \underline{C} - \underline{C}_{BG}$$

$$\underline{K} = \sum_{i,j,m} f(X_r, t_r | x_i, y_j, t_m) \cdot F(x_i, y_j, t_m) - \text{footprint-flux sums over space and time,}$$

$$S - \text{measurement error covariance matrix}$$

Preliminary Inverse Modeling Results

Next Steps

- Refinement of background air estimates
- CH₄ emission trends for each region
- Deployment of additional towers
- Analysis of CO₂ sources and sinks (in situ observations, VPRM model and satellite data)
- Apply the same pre-processing, filtering and inverse modeling methodology to all EN sites (examples for the northeastern US, where dense network has already been deployed)

