Oxygenated volatile organic compounds in the remote marine troposphere: Results from the Cape Verde Atmospheric Observatory

Cape Verde Atmospheric Observatory (CVAO) 16° 52' N, 24° 52' W

THE UNIVERSITY of York

Lucy J. Carpenter, Katie Read, James Lee, Ally Lewis, James Hopkins -NCAS, University of York Luis Mendes, Helder Lopez - *INMG, Cape Verde* Steve Arnold - *Earth and Environment, University of Leeds* Rachael Beale, Phil Nightingale – *PML, UK*

meteo.

outh Marine

Measurement	Method
Met stations at 10, 30m	Various
03	UV absorption
NO/NOx/NOy	Chemiluminesence
СО	VUV Fluorescence
C ₂ -C ₈ NMHCs and DMS	dc-GC-FID
C ₁ -C ₅ O-VOC	dc-GC-FID
Halocarbons	GC-MS
JO ¹ D	Radiometer

Oxygenated volatile organic compounds (OVOCs)

CAM-Chem vs measurements

Monthly averages

Dominated by anthropogenic emissions (39 %-91 %)?

Are MBL acetone concentrations controlled by anthropogenic NMHC?

Role of the oceans?

•Jacob et al. (2002)- ocean a significant source of acetone

• *Methanol, acetaldehyde and acetone quantified in seawater via MI-PTR/MS*

Acetaldehyde in Mauritanian Upwelling (ICON)

Beale, R. Quantification of oxygenated volatile organic compounds (OVOCs) in seawater, 2011, Ph.D thesis, University of East Anglia, UK. *Manuscripts in preparation*.

Modelled oceanic acetone fluxes

•Sea-air flux $F = k_t (C_w - C_a/H)$ $1/k_t = 1/k_w + 1/Hk_a$

How does this change model results?

Biological (terrestrial) influences

Year:2008 Month:4

Year:2008 Month:9

Could model bias be due to underestimated biogenic emissions?

Fractional contribution from biogenic (green), anthropogenic (purple) and biomass burning (red) sources as calculated from CAM-Chem.

Grey lines indicate 1:1 observation:model agreement.

Methanol

Modification of atmospheric methanol by oceans

Acetaldehyde

Acetaldehyde modification by oceans

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Impact of OVOCs on diurnal mean MBL [OH]

OVOC concentrations from:

(i)observations at Cape Verde

(ii)monthly-mean CAM-Chem model output including ocean fluxes (iii)set to zero

CittyCat box model simulations

Oxygenated VOCs are a significant direct sink of OH in the MBL

•Their abundance in the remote marine environment is underestimated (particularly CH₃CHO)

 Marine and biological terrestrial sources of OVOCs could explain some of this model underestimation – more work required to establish emission strength and variability

C3 alkanes and alkenes – chemistry and emissions

Acknowledgements

Funding:

Technical support at CVAO:

Luis Mendes Neves

Helder Lopez

Modelled (GEOS-5) and measured wind speed

•With a squared wind dependence for sea-air fluxes, the difference between 10 m s⁻¹ and 6 m s⁻¹ is a factor ~3.