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Buffering Effect of the Ocean

GEOPHYSICAL RESEARCH LETTERS, VOL. 21, NO. 3, PAGES 185-188, FEERUARY 1, 1994

The potential role of the ocean in regulating atmospheric CH3Br

James H. Butler

(imate Monitoring and Disgoostics Laboratory, Mational Ozeantc and Atmospheric Admintstration,
fouder, Colorado

Ocean should become

less undersaturated as
atmospheric

© b e o B e ) concentration decreases

Fig. 2. Steady-state change in atmospheric mixing ratio (ppt)
miultmg from a chenges in anthropogenic emission rate

Changs In Alm Wixlsg Ratle {ppl)

(Gmel y*). Curves are calculated from equation 12, with the
current best estimates for k,, k;, and k; as given in Table 1,
ind allowing k, to vary from 0 to == (R = 0 10 1). The curve
for k, = 0 represents no oceanic loss, whereas for k, = = the
beeanic degradarion rate is infinitely fas:.
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Recent Models Predicted Less Negative
Saturation State

1996:

A(%) =-11.7%
Net sea-to-air flux:
-14 Gg yrt

2 6 & A b o

Saturation Anomaly (%)

2007:

A(%) = -6.0%
Net sea-to-air flux:
-6.6 Gg yr
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Halocarbon Air-Sea Transect s— Pacific and Atlantic
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CH,Br data from BLAST | [errCIEOEETES
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CH,Br data from BLAST || [preuiysms
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Global Extrapolation

Area Production
Region Weighting  Acpsgr (%)  Flux (Gg yr?) (Gg yr)

Factor gy

Open Ocean 0.8 0.3 -0.05 1.2 X 10°
Coastal 0.1 PASRS 2.6 15
Upwelling 0.1 2.4 0.09 21

Global (HalocAST) 3.4 2.6 1.5 X 10°

Global (BLAST) -15.7 -12.6 1.5 X 10?

Problems with global extrapolation of fluxes:
e Extrapolated fluxes may be biased by regional
saturation anomalies or regional in-situ wind speeds.
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A(%) - SST relationships before the phase-out is

no longer valid

- King et al., 2002
A(%) - SST relationships before the *

phase-out

Spring/Summer CH,Br A%
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Net Flux (F) = Emission (E) — Uptake (U)

18 year record of
atmospheric CH,Br from

- NOAA/ESRL GMD

U = f(p,,k,,, windspeed, SST,Sal, MLD)

Measured before and after DS279: 1° x 1° gridded datasets
phase-out of wind speed, SST, Sal, MLD
A
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Biological Degradation Rate Constants

*No significant difference between degradation rate constants observed in the
northeastern Atlantic during GasEx 98 and HalocAST-A.
*Global mean biological degradation rate constant = 0.05 (+0.01 S.E.) dL.
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1° x 1° Ocean Model

The old 1° x 1° Ocean Model (e.g. Yvon and Butler, 1996;

King et al., 2002; Yvon-Lewis et al., 2009)
e Used Wanninkhof [1992].
* Did not include separate coastal rates and used only open ocean

values for production rates, biological degradation rate constants,
etc.

Revised 1° x 1° Ocean Model
v'Uses Sweeney et al. [2007].

v’ Includes rates for both the coastal and open ocean
regions.
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Before the CH,Br Phase-Out

Emission (Gg/y) Uptake Rate (Gg/y) Net Flux (Gg/y)

Global Ocean (W92) 42 -56 -14
Global Ocean (S07) 31 -41 -10
Global Ocean (S07 +) 34.2 -41.1 -6.9
Coastal Ocean 4.6 2.4 2.2

Open Ocean 29.6 -38.7 9.1
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At the End of the non-QPS Phaseout (2010)

Uptake Rate

Emission (Gg/y) Net Flux (Gg/y)

(Gg/y)

Global Ocean (Cruise 5 5 )6
Data Extrapolation) —
Coastal Ocean ? ? 2.6

Open Ocean ? ? 0

Global Ocean
4.2 -31. 2.7
(Model) 3 31.5 =
Coastal Ocean 4.6 -0.8 3.8
Open Ocean 29.6 -30.7 -1.1
Hu, et al., Submitted, GBC HOREYIESL Ehib 2002 :‘F‘ TEXAS A&M



Summary and Conclusions

Atmospheric methyl bromide concentrations
measured during the recent cruises are consistent
with the NOAA flask network data.

The degradation rate constants measured in 2010
are consistent with previous measurements.

The observed global mean saturation anomaly
increased to ~3.4%

The oceans became a small net source of CH;Br to
the atmosphere with a global mean flux of

~3 Gg/y
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Latitude ( °N )

Differences Between Coastal-Oceanic Areas and
Open-Oceanic Areas
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 Production Rates:

Mean production rate in

coastal areas of HalocAST and
GOMECC: 0.62 nmol m=3 d-L.

Global open-ocean production
rate: 0.15 nmol m- d-! (Yvon-
Lewis et al., 2004)

* Biological
degradation rate
constant

Coastal ocean (King et al.,
1997): 0.09 d-!

Global open ocean mean:
0.05 d-!
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Atmospheric Methyl Bromide Budget (Gg yr!)

SOURCES
Fumigation - dispersive (soils)

Fumigation - quarantine/pre-shipment

Ocean
Biomass Burning
Leaded Gasoline
Temperature peatlands
Rice Paddies
Coastal Salt Marshes
Mangroves
Shrublands
Rapeseed
Fungus (Litter Decay)
Fungus (Leaf-cutter Ants)
Subtotal (Sources)
SINKS
Ocean
OH and Photolysis
Soils
Subtotal (Sinks)
Total (SOURCES - SINKS)

1996 - 1998

41.5
7.9
42
29
5.7
0.6
0.7

7
1.3
0.2
4.9
1.7
0.5
143

56
77
40
177

NOAA/ESR-L364\/IAC 2012

Range

28.1t0 55.6

7.4 to 8.5
34 to 49
10 to 40
40to 7.4
-0.1to 1.3
0.1to1.7
0.6 to 14
1.2-1.3
Oto 1
3.8t05.8
0.5t05.2

49 to 64

23 to 56

2008

6.5
7.6
42
29
<5.7
0.6
0.7
7
1.3
0.2
5.1
1.7
0.5
111.5

49
63.6
32
147.6
-36.1

Range

4.6 t0 9.0
7.1 to 8.1
34 to 49
10 to 40

-0.1to 1.3
0.1to1.7
0.6to 14
1.2-1.3
Oto 1
4.0t06.1
0.5t05.2

45 to 52

19 to 44
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Pigments that correlated with seawater CH;Br
during 13 to 25 °S
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* Elevated CH,Br was associated with two main algal groups, prymnesiophytes and
dinoflagellates.
 Emiliania huxleyi and Phaeocystis sp. can produce CH,Br at a significant rate.
« It is likely that elevated CH,Br was at least partly associated with phaeocystis sp.,

which were grazed by zooplankton, or at the senescent stage or underwent autolysis.
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