Initial Results from the Cloud, Aerosol **Polarization** And Backscatter. Lidar at Summit, Greenland

Ryan R. Neely III

M. Hayman, J. P. Thayer, R. M. Hardesty, M. O'Neill, M. Shupe, R. Stillwell, C. Alvarez

Why did we put this lidar at Summit?

- Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS)
- Clouds affect the Mass and Energy Budget of the Greenland Ice Sheet
- How do clouds impact the Greenland Ice Sheet?
 - Source: Precipitation => Mass Budget
 - Sink: Radiation => Energy Budget

What are we observing? Cloud and precipitation phase

How Do We Determine Orientation of Scatterer in CAPABL Polarization Measurements?

$$\vec{N} = \mathbf{OM}_{\mathbf{RX}} \left[\left(G(R) \frac{A}{R^2} \Delta R \right) \mathbf{T}_{atm}(\vec{k}_s, R) \mathbf{F}(\vec{k}_i, \vec{k}_s, R) \mathbf{T}_{atm}(\vec{k}_i, R) \mathbf{M}_{\mathbf{TX}} \vec{S}_{TX} + \vec{S}_B \right]$$

- When scatters may be assumed to be randomly oriented the depolarization ratio is derived as:
- as: $\delta = \frac{f_{11} - f_{22}}{f_{11} + f_{22}} = \frac{N_{\perp}}{N_{\parallel}} \text{ where }_{\mathbf{F}(\pi)} = \begin{bmatrix} f_{11} & 0 & 0 & 0 \\ 0 & f_{22} & 0 & 0 \\ 0 & 0 & -f_{22} & 0 \\ 0 & 0 & 0 & f_{11} - 2f_{22} \end{bmatrix} \text{ is the randomly oriented backscatter matrix.}$
- When scatters are not randomly oriented the depolarization ratio is derived as:

$$\delta = \frac{\mathcal{F}_{11} + \mathcal{F}_{33}}{\mathcal{F}_{11} - \mathcal{F}_{33}} = \frac{N_{\perp}}{N_{\parallel}} \text{ where }_{\mathbf{F}(\vec{k_i}, -\vec{k_i}) = \left| \begin{array}{ccc} \mathcal{F}_{11} & \mathcal{F}_{12} & 0 & 0 \\ \mathcal{F}_{12} & \mathcal{F}_{22} & 0 & 0 \\ 0 & 0 & \mathcal{F}_{33} & \mathcal{F}_{34} \end{array} \right| \text{ is the oriented} \\ \text{ backscatter matrix.} \\ 0 & 0 & -\mathcal{F}_{34} & \mathcal{F}_{44} \end{array} \right|$$

We measure 3 planes of polarization to improve cloud property retrievals.

$$ec{N} = \left[egin{array}{c} N_{||} \ N_{45} \ N_{\perp} \end{array}
ight] \qquad \qquad \mathbf{F}(ec{k_i}, -ec{k_i}) = \left[egin{array}{c} ec{J}_{11} & ec{J}_{12} & ec{J}_{22} & ec{0} & ec{0} \ ec{J}_{12} & ec{J}_{22} & ec{0} & ec{0} \ ec{0} & ec{0} & ec{J}_{33} & ec{J}_{34} \ ec{0} & ec{0} & ec{J}_{33} & ec{J}_{34} \ ec{J}_{44} \end{array}
ight]$$

• Diattenuation allows us to unambiguously infer the form of the scattering matrix.

$$D_{q} = \frac{\mathcal{F}_{12}}{\mathcal{F}_{11}} = \frac{2N_{45}}{N_{\parallel} + N_{\perp}} - 1 = 0; \ \delta = \frac{f_{11} - f_{22}}{f_{11} + f_{22}}$$
$$D_{q} = 0; \ \delta = \frac{\mathcal{F}_{11} + \mathcal{F}_{33}}{\mathcal{F}_{11} - \mathcal{F}_{33}}$$

• Triple linear polarization measurement

• **30m** spatial and **5s** temporal resolution

• 24/7 automated operation with remote access.

Example Observation

Observation of Diattenuation

- On 18 February 2012, CAPABL observed two diattenuation signatures (Light blue in top panel).
- Cirrus cloud
 - Expected regime for oriented crystals as shown by observations from CALIPSO
- Cumulus
 - Unexpected particle orientation due to turbulence from strong precipitation
 - Enhancement of linear depolarization in area of strong diattenuation

Conclusions

- CAPABL can simultaneously determine:
 - Cloud phase (linear depolarization ratio) of randomly oriented scatterers
 - Variations in the diattenuation of the scatterers, which may be used to interpret the presence of HOIC.
- Diattenuation measurements improve the overall quality of cloud phase measurements (less than 2% error in linear depolarization ratios) by reducing uncertainty about the orientation of scatterers.
- Current observation provides a first demonstration of operationally detecting HOIC by direct polarization determination.

Thank You

S. 🖻

PAB

Where did we put it?

- Summit Station
 - Peak of the Greenland Ice Cap (3.2km a.s.l)
 - 400km from coast
 - 72°34'44.10"N 38°27'34.56"W

NSF's Mobile Science Facility

Ability to measure oriented ice crystals is dependent on pointing angle of lidar.

Self Validation of Diattenuation Measurement Against Instrumental Effects

- Integrated profile from 5:30 to 6:00 UTC on February 18, 2012 (a section from the whole day shown in pervious slide).
- Using the liquid crystal rotator we can make a second measure of diattenuation using another set of off diagonal elements form the scattering matrix.
- This allows for the two measures of diattenuation to be influenced differently by detector saturation.
- Regions where both diattenuation profiles track together, above the error limits, contain positive detection of diattenuatting scatterers.
- Regions where the two diattenuation profiles behave oppositely, as is seen in the bottom of the profile, is due to detector saturation.

Diattenuation help lidar observations to be more accurate in other ways.

Dynamic range of backscatter detection is increased by an order of magnitude.