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TYPICAL CURRENT APPROACH
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MAJOR AGAGE GOAL SINCE IT’S 1978 START: ESTIMATE FLOWS OF

KYOTO & MONTREAL PROTOCOL GASES USING ON SITE MEASUREMENTS,
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e.g. Saitkawa, Thurs AM Talk on HCFC-22 inversions
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RECENT ADVANCE:
IMBEDDING HIGH
RESOLUTION
REGIONAL MODELS
INTO A GLOBAL
MODEL
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LOOKING TO THE FUTURE

as well as Addressing
Essential Needs to Requires
Very Important Improvements in Current Capabilities

Significant advances in the Global Observing System and
Economic Data Collection System with close attention to
Precision & Accuracy

For Greenhouse Gases: Higher time & Space Resolution;
GLOBAL measurements (SURFACE, PROFILES, MOLE FRACTIONS,
FLUXES); ISOTOPIC Composition (e.g. Rigby Tues Poster)

Significant improvements in: Adjointed Models of Natural
Processes; Analysed Atmospheric & Oceanic Circulation;
& Economic Emission Modeling

Estimation Models & Statistical Methods should Incorporate all
Reliable Information (weighted by Precision and Accuracy)




Example current DATA AND

OBSERVATIONS

ATMOSPHERIC GREENHOUSE GAS OBSERVATIONS
Earth System Research Laboratory (NOAA-ESRL)
Advanced Global Atmospheric Gases Experiment (AGAGE-NASA)
Network for Detection of Atmospheric Composition Change (NDACC)
Scanning Imaging Absorption Spectrometer (SCIAMACHY-ESA)
Greenhouse Gases Observing Satellite (GOSAT-Japan)
Orbiting Carbon Observatory (OCO-NASA)
Atmospheric Infrared Sounder (AIRS-NASA)
Civil and Research aircraft (CARIBIC, HIPPO, ESRL flasks)

NATURAL AND MANAGED LAND ECOSYSTEMS
Net Fluxes of carbon from Towers (FLUXNET)
International Long Term Ecological Research biomass network (ILTER)
Advanced Very High Resolution Radiometer (AVHRR)
Moderate Resolution Imaging Spectro-radiometer (MODIS)

OCEANS
In situ measurements of CO,, nutrients, pH, chlorophyll, particles
(GLODAP, CLIVAR, JGOFS, WOCE, BATS, HOT)
Satellite derived products (SeaWifs, MODIS-Aqua, OCTS, chlorophyll)

ECONOMICS DATASETS
Economic Activity & Emission Factors
(IEA, FAO, CDIAC, USGS, IRRI, IFA, CRF, UNFCC)
Input/Output Data (EXIOPOL, WIOD, IDE, OECD)



Economic data |
Trade flows ‘ Emission model parameters
N

‘ Atmospheric Carbon Transport @ieler e )
and Chemistry Model N20

Ocean
circulation
<

agricultural
land-use char <

BioECCO

\Ocean Biogeochemistry) . leaf area index,
biomass change,

PO4, O2, Fe, pCO2, eddy fluxes*
FOR P \ Y

dissolved inorganic carbon,

GASES SUCH AS alkalinity distributions decomposition rate,

vegetation C & N uptake,
COZ’ CH4 & NZO maximum growth rate, (N microbial N uptake

THAT HAVE gas transfer coefficient,
ic carbon rain ratio,
SIGNIFICANT N Gemineraizaton ate
NATURAL
SOURCES & SINKS observations used Setimates from

to constrain model models/observations surface temperature*,

not actively coupled . "
control parameter within this framework snow-water equivalent

* = no feedback, active constraint (see text)

 coupling of active variables o0 pioke ey




FOR ANTHROPOGENIC GASES
SUCH AS CF,, SF, & CHF,
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VARY CONTROLS U (AND INITIAL CONDITIONS X(t= 0)) OF COUPLED
SYSTEM, TO SEEK A SOLUTION OF THE COUPLED STATE X7, WHICH
MINIMIZES THE OBJECTIVE FUNCTION J (Atmospheric, Terrestrial, Oceanic).
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Iterative minimization of

AVACH

concentration misfit /, by variation of control variables. Optimal fit achieved for
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OSSE 1. Optimizing Parameters:

Assume that we have a “perfect” pseudo-dataset and provide some
randomization to the parameter values used in the coupled system.
How sensitive are the parameters to the pseudo-data? Which
parameters can be accurately recovered by optimizing the system?
Thus determine the level of model parameter uncertainty reduction
(compared to prior estimates) possible using existing observations.

OSSE 2. Validating Emissions:

Assume a “perfect” pseudo-dataset for all but the anthropogenic
emissions, and assume a perfect parameter dataset.

Can the framework optimize to reproduce the “real” emissions?

What is the influence of potential measurement biases on the derived
emissions (e.qg. satellite retrieval errors due to aerosol scattering).




OSSE 3. VValue of Additional Measurements:

e.qg. What if OSSE 2. shows that the emissions cannot be completely
re-captured even with near-perfect pseudo-data and “perfect”
parameters. Can perform several addritional experiments with “what-if”’
scenarios.

eMany more stations measuring atmospheric GHG mole fractions?
e Add on-site high frequency isotopic composition?
o Vertical profiles of GHG mole fractions and/or boundary layer height?

e Higher certainty in the surface distribution of GHGs (e.g. OCO-type
measurements)?

eConsiderably better coverage of ocean and land biomass?

eConsiderably higher confidence in ocean and land satellite
measurements (e.q. 10% error as opposed to 30%), different satellite
orbit patterns (altered spatial and temporal coverage), different remote
sensing techniques (active vs. passive), or different retrieval
algorithms?

e An extended network of surface flux observations (e.g. using eddy
covariance measurements)?
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