Comparison of Primary Standards/Scales of Key Greenhouse Gases between NOAA and NIST Jerry Rhoderick

- Michael Kelley, Walter Miller, Gerald Mitchell,
 - Jennifer Carney, Franklin Guenther
- Gas Metrology Group, Analytical Chemistry Division, Materials and Measurement Laboratory, NIST
 - B. Hall, E. Dlugokencky, D. Kitzis, P. Lang
- Global Monitoring Division, Earth Science Research Laboratory, NOAA

40th NOAA meeting, May 16,2012, NOAA, Boulder, Colorado

Why and How could Gas Metrology Group Best Support Atmospheric Community

- In 2009 congress task NIST to support climate change research covering many facets
- prepare new suites of ambient level standards for CO₂, CH₄, N₂O, CO, SF₆, halocarbons
- develop SRMs containing real atmospheric air to support the measurement community
- WMO was in process of becoming member of the Consultative Committee on the Quantity of Material – Metrology in Chemistry (CCQM)
 - NOAA would eventually become WMO representative as they maintain the WMO calibration scales for CO₂, CH₄, N₂O
 - NIST should support NOAA through comparison of standards

Historical Data for CH₄ SRM Lot Standards

	Y eval	u Yeval	Cert. Conc.			Years since	Cert
SRM #	ppm	ppm ^a	ppm ^b	Diff, ppm	% Diff	Certified	Year
<u>1659</u>							
11-1-CL	9.454	0.002	9.505 ± 0.080	-0.051	-0.53	30.4	1981
11-55-D	9.718	0.002	9.764 ± 0.080	-0.046	-0.47	27.8	1983
11-1-EL	9.577	0.002	9.584 ± 0.030	-0.007	-0.07	20.3	1991
11-FL-01	9.838	0.002	9.846 ± 0.020	-0.008	-0.08	14.0	1999
11-GL-01	9.865	0.002	9.863 ± 0.014	0.002	0.02	4.0	2003
<u>1658</u>							
12-1-B	0.9723	0.0001	0.9713 ± 0.010	0.0010	0.10	32.5	1979
12-11-C	0.9816	0.0001	0.9820 ± 0.010	-0.0004	-0.04	30.4	1981
12-5-D	0.9103	0.0001	0.9097 ± 0.010	0.0006	0.07	27.8	1983
12-FL-01	1.0770	0.0001	1.0787 ± 0.0022	-0.0017	-0.16	12.2	1999
<u>1660</u>							
13-8-C	3.848	0.001	3.863 ± 0.039	-0.015	-0.39	30.4	1981
13-1-D	3.893	0.001	3.890 ± 0.039	0.002	0.06	27.8	1983
13-1-EL	3.943	0.001	3.936 ± 0.008	0.007	0.17	16.0	1995

^aStandard uncertainties at the 68 % confidence interval, k=1. ^bExpanded uncertainties at the 95 % confidence interval, k=2.

Historical 1 ppm CH₄ SRM Recertification Data

	Original Certified	Reanalyzed	Difference	Date	Date	
Sample #	Concentration	Concentration	(Reanal-Cert)	Certified	Reanalyzed	Years
SRM 1658 :	: 1 µmol/mol CH4 in Air					
12-11-A	0.951 ± 0.010	0.952 ± 0.010	0.001	9/16/1976	2/12/1979	1.5
<u>12-11-A</u>	0.951 ± 0.010	0.952 ± 0.010	0.001	9/16/1976	1/30/1980	3.4
12-23-A	0.951 ± 0.010	0.949 ± 0.010	-0.002	9/16/1976	3/31/1978	2.4
12-27-A	0.951 ± 0.010	0.951 ± 0.010	0.000	9/16/1976	1/30/1981	4.4
12-12-A	0.951 ± 0.010	0.950 ± 0.010	-0.001	9/16/1976	1/30/1981	4.4
12-14-A	0.951 ± 0.010	0.952 ± 0.010	0.001	9/16/1976	3/1/1983	6.5
12-08-A	0.951 ± 0.010	0.953 ± 0.010	0.002	9/16/1976	3/1/1983	6.5
12-22-A	0.951 ± 0.010	0.950 ± 0.010	-0.001	9/16/1976	8/15/1983	6.9
12-18-A	0.951 ± 0.010	0.952 ± 0.010	0.001	9/16/1976	3/11/1988	11.5
12-5-C	0.982 ± 0.010	0.982 ± 0.010	0.000	2/25/1981	3/20/1985	4.1
12-14-C	0.982 ± 0.010	0.985 ± 0.010	0.003	2/25/1981	3/11/1988	7.0
12-29-C	0.982 ± 0.010	0.984 ± 0.010	0.002	2/25/1981	12/22/1998	17.8
12-6-D	0.913 ± 0.010	0.910 ± 0.010	-0.003	10/26/1983	7/10/1995	11.7
12-6-D	0.913 ± 0.010	0.912 ± 0.010	-0.001	10/23/1983	12/7/1998	15.1
<u>12-6-D</u>	0.913 ± 0.010	0.913 ± 0.010	0.000	10/26/1983	7/17/2006	22.7
<u>12-25-D</u>	0.913 ± 0.010	0.911 ± 0.010	-0.002	10/26/1983	1/7/1998	14.2
12-24-D	0.913 ± 0.010	0.912 ± 0.010	-0.001	10/23/1983	12/11/1998	15.1
<u>12-24-D</u>	0.913 ± 0.010	0.914 ± 0.010	0.001	10/26/1983	6/12/2006	22.6

NIST

Historical 10 ppm CH₄ SRM Recertification Data

	Original Certified	Reanalyzed	Difference	Date	Date	
Sample #	Concentration	Concentration	(Reanal-Cert)	Certified	Reanalyzed	Years
SRM 1659 :	10 µmol/mol CH4 in Air					
11-5-A	9.43 ± 0.10	9.44 ± 0.10	0.01	9/16/1976	3/31/1978	1.5
<u>11-5-A</u>	9.43 ± 0.10	9.42 ± 0.10	-0.01	9/16/1976	1/28/1980	3.4
11-24-A	9.43 ± 0.10	9.37 ± 0.10	-0.06	9/16/1976	6/7/1979	2.8
11-15-A	9.43 ± 0.10	9.39 ± 0.10	-0.04	9/16/1976	1/28/1980	3.4
11-8-A	9.43 ± 0.10	9.43 ± 0.10	0.00	9/16/1976	1/23/1981	4.4
11-13-A	9.43 ± 0.10	9.43 ± 0.10	0.02	9/16/1976	1/23/1981	4.4
11-36-B	9.56 ± 0.08	9.56 ± 0.08	0.00	11/16/1979	2/3/1981	1.2
11-36-B	9.56 ± 0.08	9.56 ± 0.08	0.00	11/16/1979	3/19/1984	4.3
<u>11-36-B</u>	9.56 ± 0.08	9.56 ± 0.08	0.00	11/16/1979	2/15/1989	9.3
11-23-B	9.56 ± 0.08	9.56 ± 0.08	0.00	11/16/1979	2/15/1989	9.3
11-52-C	9.52 ± 0.08	9.52 ± 0.08	0.00	2/25/1981	3/20/1985	4.1
11-35-C	9.52 ± 0.08	9.52 ± 0.08	0.00	2/25/1981	3/14/1988	7.1
<u>11-26-C</u>	9.52 ± 0.08	9.52 ± 0.08	0.00	2/25/1981	2/15/1989	8.0
11-48-C	9.52 ± 0.08	9.52 ± 0.08	0.00	2/25/1981	2/15/1989	8.0
<u>11-48-C</u>	9.52 ± 0.08	9.49 ± 0.08	-0.03	2/25/1981	2/22/2000	19.0
11-49-C	9.52 ± 0.08	9.52 ± 0.08	0.00	2/25/1981	2/6/1996	15.0
11-17-D	9.79 ± 0.08	9.80 ± 0.08	0.01	10/26/1983	3/14/1988	4.4
11-17-D	9.79 ± 0.08	9.79 ± 0.08	0.00	10/26/1983	7/10/1995	11.7
<u>11-17-D</u>	9.79 ± 0.08	9.82 ± 0.08	0.03	10/26/1983	12/7/1998	15.1
11-10-D	9.79 ± 0.08	9.78 ± 0.08	-0.01	10/26/1983	2/15/1989	5.3
11-09-D	9.79 ± 0.08	9.73 ± 0.08	-0.06	10/26/1983	5/16/2006	22.6

NIST

Comparison of CH ₄ Standards

2000	NIST 1998 PSMs Analyzed Value ^a	NOAA Value (CMDL83 scale) ^b	NOAA Value (NOAA04 scale) ^c
CH ₄	1804 ± 7 nmol/mol	1781 ± 1 $\Delta = -23 (-1.3 \%)$	1802 ± 1 $\Delta = -2$ (- 0.1%)
	1664 ± 8 nmol/mol	1639 ± 1 $\Delta = -25$ (- 1.5 %)	1659 ± 1 $\Delta = -5$ (- 0.3%)

^a Rhoderick, Dorko: ES&T, 2004; NIST1998 PSMs; k=2 (95%).

^b Based on Rasmussen scale which was based on an NIST 10 ppm SRM (not NOAA scale).

^c Dlugokencky, Myers, Lang, Masarie, Crotwell, Thoning, Hall, Elkins, Steele: JGR, 2005

2011	NIST 2010 PSM ^d Value	NOAA (NOAA 04 scale)	KRISS
CH ₄	$\begin{array}{c} 1836.16\pm0.75\\ \text{nmol/mol} \end{array}$	1833.62 ± 0.75 $\Delta = -2.54$ (-0.14%)	1838.5 ± 0.9 $\Delta = +2.3$ (+0.13%)

^d Rhoderick, Carney, Guenther, *Anal Chem*, accepted March 22,2012. <u>http://dx.doi.org/10.1021/ac300526v</u>

VIST

Standard uncertainties at 1σ (coverage factor k=1)

SRM 1720: Methane

Analysis of NOAA mixtures/NIST N₂O PSM

2000	NIST 1998 PSMs	NOAA Value	NOAA Value
	Analyzed Value ^a	(NOAA 2000 scale)	(NOAA 2006 scale) ^b
N ₂ O	317.6 ± 1.6 nmol/mol	313.6 ± 2.0	313.4 ± 2.0
NOAA #1		$\Delta = -4.0$ (-1.3 %)	$\Delta = -4.2$ (-1.3%)
NOAA #2	$\begin{array}{c} 294.0 \pm 1.9 \\ \text{nmol/mol} \end{array}$	287.9 ± 2.0 $\Delta = -6.1$ (-2.1 %)	287.7 ± 2.0 $\Delta = -6.3$ (-2.1%)

^a Rhoderick, Dorko: ES&T, 2004; NIST1998 PSMs
^b Hall, Dutton, Elkins: JGR, 2007

Expanded uncertainties at 2σ (coverage factor k=2)

2012	NIST 2011 PSM Value	NOAA Result (NOAA 2006A)	SIO (Scripps)	
N ₂ O	$\begin{array}{c} 317.95 \pm 0.07 \\ nmol/mol \end{array}$	318.02 ± 0.10 $\Delta = + 0.07 (+0.02\%)$	317.75 ± 0.16 $\Delta = -0.20$ (-0.06%)	

Standard uncertainties at 1o (coverage factor k=1)

Important Considerations

Source of losses

- flow rate when transferring gases (discovered w/ N₂O)
 - during prep of level 2 PSMs (1% concentration) transfer lines cold and sweating during parent transfer; PSMs did not pass utest in Genline; N₂O freezing out??
 - remade level 2, transferring at slow rate and all pass utest

SRM 1720: N2O

NOAA and NIST assigned values to samples (July 2011)

SRM 1720: N₂O

average (n=30) = - 0.50 nmol/mol sd = ± 0.08 nmol/mol

average (n=30) = - 0.01 nmol/mol sd = ± 0.08 nmol/mol

N2O Difference: NOAA(ECD)-NIST(CEAS) and NOAA(ECD)-NIST(ECD)

Sample #

Regulator issue??

Probably not since 2 regulators used, analyzing 2 samples at time

Additional Comparisons by CEAS

Ratios to Lot Standard (#27); 4 ratio/day, different regulator/day

Additional Comparisons by CEAS

N2O Difference: NOAA - NIST

Important Considerations

Source of losses

transfer lines in manifold; found 0.2 ppm loss of CO₂

 changed from flexible braided stainless steel over teflon tubing to 0.64 cm stainless steel tubing

losses of compounds to cylinder walls (CO₂)

- CO_2 losses of $\geq 0.2 \ \mu mol/mol$

CO₂ Loss Studies

Transfer Lines

Mother	Daughter		Transfer	CO ₂ Loss
Cylinder	Cylinder	Pressure	Line	ppm
FB03265	CAL018224	650	SS	0.144
CAL018224	FB03343	300	teflon	0.266

Cylinder Walls

- Transferred \approx 13.8 bar of 388.65 µmol/mol CO₂/air mother PSM to cylinders
- Analyze the daughter against the mother; stainless steel transfer lines

<u>Cylinder</u>	<u>µmol/mol</u>	Loss CO ₂
CAL018224	- 0.39	(treated for CO ₂ service)
FB03343	- 0.31	(treated for CO ₂ service)
APEX994663	- 0.12	(treated for low level VOC service, Ni plated valve)

CO₂ Loss Studies

 13.8 bar of mother cylinder (CC12989 – 393.2 μmol/mol CO₂/Air) transferred into:

<u>Cylinder</u>	<u>µmol/mol Loss CO</u> 2
APEX1005718	- 0.08
APEX1005723	- 0.12
APEX1005679	- 0.08
APEX1005706	- 0.04
APEX1005720	- 0.08

PSMs prepared in these cylinders still predicted a - 0.6μ mol/mole CO₂ loss (0.2 % relative) based on difference from NOAA scale.

Since the primary standards were at 110 bar, the next wall effects study will try to determine if there is a pressure component to these losses.

Summary and Future

- Comparisons between NOAA scale and NIST PSMs are in good agreement for CH₄ and N₂O
- CO₂, CO and SF₆ comparisons as PSMs completed
- Other comparisons for halocarbons in the future