In Situ CO₂ Monitoring Network Evaluation and Design: A Criterion Based on Atmospheric CO2 Variability

Y. Shiga¹, A.M. Michalak², A. Chatterjee³, D. Hammerling³, K.L. Mueller⁴, S.M. Gourdji⁵, V. Yadav², S.R. Kawa⁶ and R.J. Engelen⁷

- 1.Department of Civil and Environmental Engineering, Stanford University, Stanford, CA
- 2. Carnegie Institution for Science, Department of Global Ecology, Stanford, CA
- 3. Civil and Environmental Engineering, University Of Michigan, Ann Arbor, MI
- 4. American Meteorological Society University Corporation for Atmospheric Research Congressional Fellow, Washington DC
- 5. Environmental Earth System Sciences, Stanford University, Stanford, CA
- 6.NASA Goddard Space Flight Center, Greenbelt, MD
- 7. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

STANFORD

UNIVERSITY

Outline

http://www.esrl.noaa.gov/gmd/dv/iadv/

STANFORD UNIVERSITY

Goals of CO₂ Monitoring Network

Also depends on the method used to recover fluxes...

Motivation for CO₂ Monitoring Network Design Tool

- Robust methods to augment the existing network within selected framework (Inverse modeling/ Data Assimilation) ~ Optimization problem ex. Simulated Annealing
 - Computationally intensive (especially for network expansion)
- Optimal network is intrinsically tied to specific model assumptions
- To name a few...
 - Resolution of estimates
 - Atmospheric transport model
 - Choice of a priori flux information
 - Choice of a priori error structure

How should this network be designed?

Can variability in atmospheric CO₂ be used to inform a network design tool?

- Use modeled CO₂ concentrations to represent true variability of atmospheric CO₂, Alkhaled et al. 2008
- Develop information criterion, based on variability of atmospheric CO_2 to define network coverage
- Evaluate 2004-2008 network expansion in North America
- Create two hypothetical network expansions
- Validation study Synthetic data inversion
- Caveat
 - Many external factors go into actual tower placement
 - Not a stand alone tool

Identifying Spatial Variability in CO₂

Local Variogram Analysis

- Spatial variability of surface level
 CO₂ is location dependent
- •Shorter correlation lengths ≈ higher variability
- Network should be able to capture most variable signal throughout year

STANFORD

How to define network coverage?

Correlation Length

 The separation distance at which two points become nearly independent (uninformative)

Fractional Correlation Length Scale

- Distance to nearest tower, h_i, divided by CL_i
- Defined per grid cell h_i/Cl_i

Ensures that a tower captures some fraction of atmospheric variability of each grid cell

GLOBAL ECOLOGY

Network Expansion 2004 – 2008

GLOBAL ECOLOGY

Hypothetical Network Expansion

Validate Hypothetical Networks Using Pseudo Data Inversion

- Synthetic Data
 - Transported CASA fluxes forward to towers using STILT/WRF
- Domains:
 - Spatial: North America at 1°x1°
 - Temporal: 1 month, July at 3hrly
- Tested 3 Networks
 - Current 2008 network
 - 1CL Network (+ 8 towers)
 - − ½ CL Network (+ 43 towers)

Average Monthly Fluxes July 2008

GLOBAL ECOLOGY

Pseudo Data Results Biome

STANFORD UNIVERSITY

Need to leverage all three...

Conclusions

- Correlation Length Criteria
 - Uses variability in atmospheric signal to inform network design
 - Provides an exploratory tool for CO₂ monitoring network design
 - Method to locate areas in need of monitoring stations – find gaps in current network

