In Situ CO₂ Monitoring Network Evaluation and Design: A Criterion Based on Atmospheric CO2 Variability Y. Shiga¹, A.M. Michalak², A. Chatterjee³, D. Hammerling³, K.L. Mueller⁴, S.M. Gourdji⁵, V. Yadav², S.R. Kawa⁶ and R.J. Engelen⁷ - 1.Department of Civil and Environmental Engineering, Stanford University, Stanford, CA - 2. Carnegie Institution for Science, Department of Global Ecology, Stanford, CA - 3. Civil and Environmental Engineering, University Of Michigan, Ann Arbor, MI - 4. American Meteorological Society University Corporation for Atmospheric Research Congressional Fellow, Washington DC - 5. Environmental Earth System Sciences, Stanford University, Stanford, CA - 6.NASA Goddard Space Flight Center, Greenbelt, MD - 7. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom STANFORD UNIVERSITY ## Outline http://www.esrl.noaa.gov/gmd/dv/iadv/ STANFORD UNIVERSITY ## Goals of CO₂ Monitoring Network Also depends on the method used to recover fluxes... ## Motivation for CO₂ Monitoring Network Design Tool - Robust methods to augment the existing network within selected framework (Inverse modeling/ Data Assimilation) ~ Optimization problem ex. Simulated Annealing - Computationally intensive (especially for network expansion) - Optimal network is intrinsically tied to specific model assumptions - To name a few... - Resolution of estimates - Atmospheric transport model - Choice of a priori flux information - Choice of a priori error structure ## How should this network be designed? ## Can variability in atmospheric CO₂ be used to inform a network design tool? - Use modeled CO₂ concentrations to represent true variability of atmospheric CO₂, Alkhaled et al. 2008 - Develop information criterion, based on variability of atmospheric CO_2 to define network coverage - Evaluate 2004-2008 network expansion in North America - Create two hypothetical network expansions - Validation study Synthetic data inversion - Caveat - Many external factors go into actual tower placement - Not a stand alone tool ## Identifying Spatial Variability in CO₂ #### Local Variogram Analysis - Spatial variability of surface level CO₂ is location dependent - •Shorter correlation lengths ≈ higher variability - Network should be able to capture most variable signal throughout year STANFORD ## How to define network coverage? #### Correlation Length The separation distance at which two points become nearly independent (uninformative) ## Fractional Correlation Length Scale - Distance to nearest tower, h_i, divided by CL_i - Defined per grid cell h_i/Cl_i Ensures that a tower captures some fraction of atmospheric variability of each grid cell **GLOBAL ECOLOGY** ## Network Expansion 2004 – 2008 **GLOBAL ECOLOGY** ## Hypothetical Network Expansion # Validate Hypothetical Networks Using Pseudo Data Inversion - Synthetic Data - Transported CASA fluxes forward to towers using STILT/WRF - Domains: - Spatial: North America at 1°x1° - Temporal: 1 month, July at 3hrly - Tested 3 Networks - Current 2008 network - 1CL Network (+ 8 towers) - − ½ CL Network (+ 43 towers) ## Average Monthly Fluxes July 2008 **GLOBAL ECOLOGY** #### Pseudo Data Results Biome STANFORD UNIVERSITY ## Need to leverage all three... ## Conclusions - Correlation Length Criteria - Uses variability in atmospheric signal to inform network design - Provides an exploratory tool for CO₂ monitoring network design - Method to locate areas in need of monitoring stations – find gaps in current network