Aircraft Measurements in the Uintah Basin, February 2012

Anna Karion^{1,2}

Colm Sweeney^{1,2}, Gabrielle Petron^{1,2}, Alan Brewer³, Bob Banta³, Mike Hardesty³, Greg Frost^{1,3}, Michael Trainer³, Stephen Conley⁴, Sonja Wolter^{1,2}, Tim Newberger^{1,2}, Jonathan Kofler^{1,2}, Jack Higgs^{2,5}, Ed Dlugokencky², Pat Lang², Ben Miller^{1,2}, Carolina Siso^{1,2}, Stephen Montzka², Pieter Tans²

¹ CIRES (University of Colorado)
²NOAA Global Monitoring Division
³NOAA Chemical Sciences Division
⁴Scientific Aviation, Inc and UC Davis
⁵Science and Technology Corporation

Uintah Basin Campaign Overview

- Uintah County had the highest ozone levels in the nation in 2011
- Large producer of oil and natural gas
- Multi-agency/university field campaign
- Ozone precursor levels (VOCs) mechanisms lead to high O₃ events in winter
 - Difficult to quantify and not well-known
- Methane is used as a tracer for natural gas leakage
 - raw gas usually contains 70-90% methane
 - instruments capable of high-frequency, accurate methane measurements
 - Emissions of CH₄ can be used to determine VOC emissions
- Please visit Gabrielle Petron's poster this afternoon

Uintah Basin, Feb 7, 2012: NOAA Airborne Measurements

NOAA Global Monitoring Division Aircraft Measurements of CH₄, February 4, 2012

qa

T

Eve

NOAA Global Monitoring Division Aircraft Measurements of CH₄, February 3, 2012

Mass Conservation

Determining a CH_4 flux will let us calculate the VOC flux using measured emission ratios from flasks.

CH₄ Profiles Within and Outside of the Gas Field: Feb 3, 2012

Downwind Plume Integration

Methane enhancement in plume downwind of field is integrated over the horizontal extent to calculate the CH₄ surface flux.

Flux calculation for February 3 2012

$$\dot{n}_{CH_4} = V \cos \alpha \int_{-b}^{+b} \Delta X_{CH_4} \left(\int_{h(x)}^{PBL} n_{air} dz \right) dx$$

Parameter	Symbol	Mean Value	Variability	% Uncertainty
Wind Speed	V	5.1 m/s	0.7 m/s	13%
Wind Direction		54.4°	11°	
Cosine of angle between wind direction and normal to heading	cosα	0.74 0.99	0.14 0.05	19%
Methane enhancement	ΔX_{CH4}	84 ppb	5.4 ppb	6.4%
Mixing layer depth	PBL-h(x)	1539 m	100 m	6%
Total Molar Flux (CH ₄)	՝ո _{CH4}			25%

This is the uncertainty of a single day observation. Relatively low uncertainty on this observation due to consistent winds.

NOAA GMD Flask Data (Aircraft Only) Hydrocarbons

Denver-Julesburg Basin Campaign May 2012

Summary

- Light aircraft measurements are a valuable tool for investigating emissions distributed over a large spatial area.
 - Map out extent and gradient of emissions
 - Can be used (with accurate MET data) to calculate emissions flux independent of bottom-up inventories
- As expected, flask measurements show high degree of correlation between various hydrocarbons and CH₄.
- The next step will be to calculate emissions for several VOCs measured in air samples collected by the aircraft.