Partitioning of terrestrial carbon sources using ¹⁴CO₂: observations and modeling

Scott Lehman

INSTAAR, University of Colorado at Boulder

J. Miller, P. Tans, C. Sweeney, A. Andrews - CIRES/NOAA/ESRL, Boulder C. Wolak - INSTAAR, Boulder J. Southon - UC Irvine, California B. LaFranchi, T. Guilderson - LLNL/CAMS, California M. Fischer - LBL, California; J. Turnbull - RRL, NZ

sensitivity to fossil fuel CO₂ (C_{ff}) $1/\lambda_{14C} = 8223 \text{ yr}$

 $\Delta^{14}C\% = ({}^{14}C:C_{sa}/{}^{14}C:C_{std} - 1)*1000$

fossil fuel CO₂ Δ = -1000‰ (*i.e. zero* ¹⁴C content)

ambient atm. (& other CO_2 sources) $\Delta = \sim +50\%$

$$\frac{\Delta\Delta_{ff-atm}}{C_{atm}} = \frac{-1050\%}{390\text{ppm}} = \sim -2.7 \text{ \lows/ppm}$$

detection of ~1 ppm for recently-added fossil-fuel derived CO₂ (C_{ff}) requires measurement precision of ~2‰
 detection is unbiased if other contributions to tropospheric ¹⁴C distribution over large land areas are small

$\Delta^{14}CO_2$ vs. C_{ff} in TM5

•distribution of C_{ff} dominates Δ¹⁴CO₂ signal over NH land areas (figures scaled according to mass balance relation of -2.7‰/ppm)
•small differences primarily due to terrestrial disequilibrium flux of ¹⁴C (quantifiable)
•near-surface Δ¹⁴C gradients ~14 ‰ for this week in Jan. 2006 (~8x precision)

$$\begin{aligned} \text{quantification of } \mathbf{C}_{\text{ff}} \\ C_{obs} &= C_{bg} + C_{ff} + C_r + C_p \\ \Delta_{obs} C_{obs} &= \Delta_{bg} C_{bg} + \Delta_{ff} C_{ff} + \Delta_r C_r + \Delta_p C_p \\ and \ setting \ \Delta_p &= \Delta_{bg} : \\ C_{ff} &= \frac{C_{obs} (\Delta_{obs} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}} - \frac{C_r (\Delta_r - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}} \end{aligned}$$

Turnbull et al. 2006

• right hand term is correction to C_{ff} of ~0.2 - 0.5 ppm (i.e., C_r and Δ_r can be independently quantified)

• C_{ff} detection effectively limited by quadrature sum uncertainty of two ¹⁴C measurements (Δobs , Δbg)

- isolation of $\mathrm{C}_{\!f\!f}$ delivers net C_{bio} (w/ same uncertainty as for $\mathrm{C}_{\!f\!f}$

CU-UCI 1 σ repeatability (Δ^{14} C ‰)

NWT3 and NWT4 replaced NWTstd (near exhaustion) in late 2009 NWTstd 1σ repeatability 2003-2009 = 1.8 ‰ report 1σ repeatability or 1σ single sample precision, whichever is larger

NE U.S. example [Miller et al. '12]

samples from 5-6 yrs of bi-weekly vertical aircraft profiles in area of significant regional emissions and outflow 3-ht. sampling for ¹⁴CO₂, 9-ht. for all other gases

isolation of C_{ff} and C_{bio} , CMA+NHA

0.4

 $C_{obs} = C_{bg} + C_{ff} + C_{bio}$

 $\Delta_{\rm obs} = \Delta_{\rm bg} + \Delta_{\rm ff}$

obs fr. ~300 and ~2000 masl (vs. 4000 m 'bg' in FT)
C_{ff} detectable year round (1-10 ppm)

300 m obs only, CMA+NHA

- sharpens view of biospheric signal (vs. raw CO₂ enhancement)
- C_{bio} large even in winter (~60% of total winter-time enhancement) despite urban/industrial observational footprint
- CO₂-only methods: can not assume urban enhancements are due to C_{ff}
- C_{ff} and C_{bio} independently useful

growing observational footprint

annual average sensitivity for all PBL ¹⁴C obs

[*Miller et al.,* 2012]

since late '09 from ~thrice weekly tower (PBL) ¹⁴C obs (excludes INX, MWO)

¹⁴C footprint sufficient for meaningful guidance of CarbonTracker, using both ¹⁴C and CO₂ as obs constraints

circled sites: collaborative w/ LLNL/CAMS

use of ${}^{14}C + CO_2$ in CT to improve NEE

F_{ff} prior (given 0 uncertainty)

NEE posterior retrieval

deviation F_{ff} prior from actuals will lead directly to bias in retrieved F_{bio} (NEE) from inversion of C_{obs}

$$dC_{obs}/dt = F_{ff} + F_{bio} + F_{fire}$$

 F_{ff} is large *w.r.t* net annual F_{bio} , and.. extrapolation of F_{ff} inventories will not capture F_{ff} anomalies associated with sustained heat and cold waves

use of ${}^{14}C + CO_2$ in CT to improve NEE

F_{ff} prior (given 0 uncertainty)

NEE posterior retrieval

deviation F_{ff} prior from actuals will lead directly to bias in retrieved F_{bio} (NEE) from inversion of C_{obs}

$$dC_{obs}/dt = F_{ff} + F_{bio} + F_{fire}$$

relax F_{ff} prior uncertainty to permit guidance by ¹⁴C obs where available

TM5-¹⁴C vs. NWR (FT) obs

 $C_{atm}d\Delta/dt = (\Delta_{foss} - \Delta_{atm})F_{fos} + \Delta_{dis}F_{surf-gross} + isoF_{cosm} + isoF_{nuc}$

¹⁴C fluxes from *a priori* geophysical estimates & CT FF (no tuning): *budget terms properly balanced, if not correct*

residuals, NWR

90% within measurement error, bias = -0.5 per mil

TM5-¹⁴C vs. Lower Trop. obs, US

monthly mean Site-NWR gradients, F_{foss} from CT (climatological m_m obs = 132 site_mos fr. ~2500 obs)

summary

- developed scientifically meaningful ¹⁴C measurement capability
- expanded observational footprint to US national scale (and elsewhere)
- propose moving forward w/ ¹⁴C and CO₂ as dual observational constraints in CarbonTracker (for NEE, C_{ff} emmisions verification)
- evaluating tracer: C_{ff} emissions ratios [Miller *et* al., JGR-A, 2012] nationally, updating absolute emissions estimates for correlate gases