Constraining Fossil Fuel CO₂ Emissions with Joint Assimilation of Atmospheric CO₂ and ¹⁴CO₂ Measurements

S. Basu¹, J.B. Miller², S. Lehman³ and C. Lindsey³

¹NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305; 303-497-6650, E-mail: sourish.basu@noaa.gov

²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

³Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309

Atmospheric source-sink inversions can be used to estimate surface fluxes of a trace gas (such as CO_2 or CH_4) from observed atmospheric gradients. Present day inversion products reporting surface fluxes of CO_2 , such as NOAA's CarbonTracker (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), solve for natural fluxes of CO_2 assuming that the fossil fuel flux of CO_2 is perfectly known. Since the CO_2 observing network is primarily sensitive to the sum of the natural and fossil fuel fluxes, any error made in calculating the 'fixed' fossil fuel CO_2 flux will lead directly to bias in the retrieved natural CO_2 flux. This is especially important at the regional scale. While the global total fossil fuel CO_2 flux is known to about 5% accuracy, regional estimates can be far less accurate. Over the past decade, the Carbon Cycle Greenhouse Gases Group at the Global Monitoring Division, in collaboration with the Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado (Boulder), have been measuring atmospheric ¹⁴CO₂/¹²CO₂ at selected sites, mostly over North America. Fossil fuel carbon, which is millions of years old, is devoid of this radioisotope, which has a half life of 5730 years. As a result, fossil fuel CO_2 emissions have a very different isotopic signature than all other sources. Here, we present the first results from a joint inversion of atmospheric CO_2 and ¹⁴CO₂ measurements, in order to estimate the natural and fossil fuel fluxes of CO_2 , as well as so-called "disequilibrium fluxes", which also influence atmospheric radiocarbon gradients.

Figure 1. Optimized surface fluxes from three different source-sink inversions, and the first guess ("Prior"). The "Traditional" inversion uses fixed fossil-fuel fluxes, and adjusts natural CO_2 fluxes to fit atmospheric CO_2 measurements. The " CO_2 (FF) w/o ¹⁴ CO_2 " adjusts both natural and fossil fuel sources of CO_2 , again using only CO_2 measurements. The " CO_2 (FF)" adjusts both natural and fossil fuel fluxes of CO_2 by assimilating both atmospheric CO_2 and ¹⁴ CO_2 measurements.