Radiative forcing of a small-scale wildfire smoke plume at the surface, atmosphere, and TOA from surface and satellite observations John A. Augustine¹, Robert Stone^{1,2}, David Rutan³

and Anand Inamdar⁴

¹Earth System Research Laboratory, Global Monitoring Division, Boulder, CO ²Cooperative Institute for Research in Environmental Sciences, University of Colorado ³NASA Langley Research Center, A.S.&M., Inc., Hampton, VA ⁴Cooperative Institute for Climate and Satellites, Asheville, NC

Special thanks to Ken Masarie for help in reading MODIS data

42nd Global Monitoring Annual Conference, May 19-21, 2014

NASA Terra MODIS imager 1820 UTC, ~ 2 hours after the fire started

Our focus is to compute the total Radiative Forcing (RF) and Efficiency (RFE) of the smoke aerosol at the <u>surface</u>, <u>atmosphere</u>, and <u>TOA</u>

$$RFE_{(sfc or TOA)} = \Delta net Rad_{(sfc or TOA)} / \tau_{500nm}$$
$$RFE_{atmos} = RFE_{TOA} - RFE_{sfc}$$

- Computed for SW, LW, and all-wave
- RFE_{SW} dependent on solar zenith angle and surface albedo
- RFE_{LW} dependent on the thermal structure of the atmosphere, water vapor, and skin temperature

Clear-sky surface measurements throughout the day allowed direct calculation of RFE_{sfc}

Satellite data is necessary to compute aerosol radiative forcing at TOA

- CERES broadband imagers (20 km res.) could not resolve the Fourmile Canyon fire smoke plume
- MODIS spectral imagers (1 km res.) could resolve the plume, but NASA does not do a narrowband-to-broadband conversion

MODIS Spectral radiance to broadband conversion

SW: Tang et al. [2006], Remote Sensing Environment

 $\mathsf{r} = \mathsf{b}_0 + \rho_1 \mathsf{b}_1 + \rho_2 \mathsf{b}_2 + \rho_3 \mathsf{b}_3 + \rho_4 \mathsf{b}_4 + \rho_5 \mathsf{b}_5 + \rho_6 \mathsf{b}_6 + \rho_7 \mathsf{b}_7$

r = broadband shortwave reflectance $b_i = c1_i + [c2_i/(1+exp((1/cos(VZA)-c3_i/c4_i))))$ $\rho_i = \pi L_i d^2/Eo_i \cos(SZA)$ L_i upwelling radiance for MODIS channel i

RMS error = 0.01

LW: Inamdar and French [2009], AMS Conference

 $LW_{TOA} = a_0 + a_1L_{11} + a_2L_{12} + a_3W$

 L_{11} and L_{12} are MODIS 11 and 12µm radiance w is the MODIS integrated water vapor product

LW narrowband to broadband model calibrated to CERES data for one week surrounding the event

Surface AOD measurements at **BAO** and **SURFRAD**

Terra SW broadband reflectance at 18:20 UTC

RMS=0.01

Aqua SW broadband reflectance at 20:00 UTC

Terra broadband longwave at 18:20 UTC

Longitude

Aqua broadband longwave at 20:00 UTC

Longitude

LW Radiative Forcing Efficiency at TOA

RF Results (SZA~ 35°, sfc. albedo = 0.15)

SW	τ_{500}	Sfc RF _{SW}	TOA RF_{SW}	Atmos.RF _{SW}	Atmos. heating
1820 UTC					(°K/day)
SURFRAD	0.057		-0.6 Wm ⁻²		
BAO	3.37	-512 Wm ⁻²	-113 Wm ⁻²	+399 Wm ⁻²	+12.6 (±0.6)
2000 UTC					
SURFRAD	1.37	-255 Wm ⁻²	-58 Wm⁻²	+197 Wm ⁻²	+8.4 (±0.6)
BAO	1.23	-187 Wm ⁻²	-75 Wm⁻²	+112 Wm ⁻²	+6.5 (±0.6)
LW	τ_{500}	Sfc RF _{LW}	TOA RF _{LW}	Atmos.RF _{LW}	Atmos. heating
1820 UTC					(°K/day)
SURFRAD	0.057		+0.4 Wm ⁻²		
BAO	3.37	+34 Wm ⁻²	+24 Wm ⁻²	-10 Wm ⁻²	-4.2 (±0.3)
2000 UTC					
SURFRAD	1.37	+19 Wm ⁻²	+10 Wm ⁻²	-6 Wm⁻²	-2.9 (±0.3)
BAO	1.23	+12 Wm ⁻²	+9 Wm ⁻²	-3 Wm⁻²	-4.0 (±0.3)

MODIS integrated water vapor at 08:50 UTC, 6 Sept. 2010 ~ 8 hours <u>before</u> the fire started

Longitude

MODIS integrated water vapor at 20:00 UTC, 6 Sept. 2010 ~ 3 hours <u>after</u> the fire started

Plume area shows a 1.0 – 1.5 mm increase in integrated water vapor over 3 hours due to combustion alone

Summary and Conclusions

- MODIS narrowband to broadband conversion models appear to work well for both the SW and LW
- SW cooling at the surface is 3-4 times greater than at TOA
- Smoke aerosols warm the surface in the LW, but that warming is overwhelmed by SW cooling (15 times greater in magnitude)
- At TOA, the magnitude of SW cooling is 4 to 10 times greater than the magnitude of LW heating at TOA
- Atmospheric cooling by the LW offsets the greater SW warming by about one third—thus, LW effects need to be considered when modeling the "semi-direct aerosol effect on clouds"
- Using MODIS water vapor product, we were able to quantify the increase in integrated water vapor by the burning biomass—1.0 to 1.5 mm over three hours