Aerosols at Mauna Loa Observatory – spring, 2011, versus spring, 2001

Thomas A. Cahill, Jason Snyder, and David Barnes, DELTA Group, University of California, Davis 95616 <u>tacahill@ucdavis.edu</u>

Take-home messages: (I'll send this if you access my e-mail)

- 1. Aerosols are a major factor in GCM uncertainties
- 2. Continuing growth in Chinese (and Indian) energy use threatens increases in optically efficient aerosols, especially sulfates, soot, and possibly organics.
- 3. Our attempt to document these trends derived from 6 week spring sampling programs, 2001 versus 2011, was disappointing because of the highly variable short duration transport phenomena.
- 4. To see trends of climatically-efficient aerosols at MLO, we must use continuous multi-year measurements, including particle size and composition.
- 5. We now have cost efficient techniques developed doing at Greenland, 2003 2013.
 - 1. Measure aerosols in 8 size mode, 12 hr time resolution,
 - 2. Measure mass soft beta ray analysis
 - 3. 32 elements by synchrotron-induced XRF, to picogram/m³ detection limits
 - 4. optical spectrometry 350 nm to 720 nm, every 50 nm (soot), and
 - 5. (proposed) organic surrogates (IMPROVE protocol)

UC Davis and Asian aerosols at MLO

- 1980 6 weeks northern China
 - Mingxing, Winchester, Cahill, and Lixin, *Kexue Tongbao Science Bulletin*. Pp. 51-54 (1981).
 - First size and compositionally resolved dust near Beijing, 4/19/1980
- 1983 9 months, MLO, 3.5 1.0, 1.0 0.5, 0.5 0.0 μm
 - Braaten and Cahill, Atm., Environment 20:1105-1109 (1986).
 - Finding: Asian dust in spring, size $^{\sim}$ 1 μm diameter
 - Elemental ratio of soil same as Beijing, not local Hawaiian soils
- 1989 1999 IMPROVE at MLO, PM_{2.5} 24 hr samples twice a week
 - May 6 May 23, 1996 3 DRUM 10 to 1.15, 1.15 to 0.34, 0.34 to $^{\sim}$ 0.15 μm
 - Perry, Cahill, Schnell and Harris JGR 104 15 18521 818533 (1999)
 - Spring enhancement of soils and industrial pollutants (summarized in this talk)
 - Seen across the US VanCuren and Cahill JGR 107, D24, 1804 (2002)
- 2001 March 13 April 26, the enormous study ACE Asia, aircraft, satellites, and UC Davis ground level aerosol measurements, all with 3 hr data, 8 with 8 size, modes 10 to 0.09 μm, including MLO, and 10 with 3 size modes.
 - Seinfeld et al Bulletin Amer. Meteor. Society, 85:367-380 (2004)
 - Findings: Comparison to Asian sources,
 - Transport via Taiwan (this talk)
- 2011 6 weeks spring and fall, DELTA Group 8 DRUMs, 8 size modes, 10 to 0.09 μm, 3 hr data
 - Findings: Asian trends ???
 - Very fine silicon from power plants (this talk);

Top Fossil Fuel Emitters (Absolute)

GLOBAL

With leap year adjustment in 2012 growth rates are: China 5.6%, USA -4.0%, EU -1.6%, India 7.4%. Source: CDIAC Data; Le Quéré et al 2013; Global Carbon Project 2013

Coal consumption: China rivals the world billion tons

Global Anthropogenic SO₂ Emissions

Mass and major species

Industrial and urban aerosols

Spring enhancement of sulfates and organics

April 17, 2010

Results of 1980 - 1999

- Soil dust
 - Overwhelmingly Asian, not local soil
 - Overwhelmingly spring transport
 - Highly variable year to year
 - Is ~ 1 μm diameter, but extends down to 0.5 μm
 - Correlated with anthropogenic toxics
 - Occurs at MLO on both downslope (night) and upslope (day) winds
- Sulfates and organics
 - Spring enhancement but mostly an annual impact

East Asia and Oceania

Aerosol sampling sites – UC Davis in ACE-Asia

500

NOAA HYSPLIT MODEL Backward trajectories ending at 0000 UTC 18 Mar 01 CDC1 Meteorological Data

Soil trajectories have Asian sources; Note that they always arrive from elevated trajectories descending to MLO

Taiwan is on the transport trajectory

Results of ACE-Asia 2001

- Established spatial variability of soil, sulfur, and anthropogenic toxics sources in China
- Measured drop off as aerosols passed over East Asian islands
- Tracked a soil event from the Gobi desert to MLO via Taiwan

Ratio of aerosols – 6 weeks at Mauna Loa Observatory – Spring 2011 versus spring 2001

PM2.5	Soil	Al, Si, K,	Amm.	Salt	metals							
	With oxides	Ca, Mn, Fe	SO4	NaCl	V	Cr	Ni	Cu	Zn	Se	Br	Pb
	ng/m ³		ng/m ³									
2001	299.4		535	11.5	0.05	0.12	0.40	0.58	1.91	0.06	0.23	0.9
2011	325.7		1245	18.0	0.12	0.07	0.41	1.26	1.62	0.44	1.13	5.9
Ratio, 2011/200 1	1.28		2.33	1.56	2.49	0.60	1.04	2.17	0.86	7.28	4.89	6.26
Error	± 0.28											
		1 1										

• Notable:

- Soil and sea salt only modestly enhanced
- Ammonium sulfate ~ Chinese coal use, up x 2.5
- Cars increased by about a factor of 10, but lead 40% from coal

The very fine silicon coal tracer at MLO

Note: SO₂ scrubbers, increasingly used in China, remove the silicon, too.

Spring, 2011

Comparison to fall; note the scale change.

Results of 2011 to 2001 comparison

- Seasonal variability make six week studies unable to accurately measured annual increases
- Need an continuous study to see aerosol trends
- Very fine silicon (tracer of coal combustion)
 ~ 15% at MLO versus Taiwan

Trends in aerosols for global climate studies

• Urgent need to track aerosols at MLO

- Continuous measurements (12 hr resolution) of size resolved (10 to 0.09 μm) mass, optical scattering and absorption , sulfates, organics, soot, trace metals,....
- Techniques perfected at Greenland, 2003 to 2013, in much more challenging conditions
 - U. California, Davis, with UC Merced, Desert Research Institute, and U. Alaska, Fairbanks
 - Cost circa \$45,000/year

Soil signature allows deposition calculations while identifying current anthropogenic impacts at Summit

Sulfur Aerosols (coal combustion) at the Greenland Summit Site Spring, 2005

Optical extinction every 50 nm 350 nm to 720 nm

Acknowledgements

- Thanks to
 - all the MLO director and staff that supported this work for all those years
 - Prof. Kevin Perry, Dr. Steve Cliff and Dr. Yongjing Zhou who performed the S-XRF at the Advanced Light Source, Lawrence Berkeley NL (DOE supported)
 - NOAA READY for HYSPLIT (what would I do without it!)
 - NSF Polar programs for the Greenland program

CHINA'S PROPOSED COAL-FIRED POWER PLANTS & BASELINE WATER STRESS

🛲 AQUEDUCT

For a comparison.....

Comparison with CO2

