Validation of Aura MLS stratospheric water vapor measurements by the NOAA frost point hygrometer

Dale Hurst,^{1,2} Alyn Lambert,³ William Read,³ Sean Davis,^{1,4} Karen Rosenlof,⁴ Emrys Hall,^{1,2} Allen Jordan,^{1,2} & Sam Oltmans^{1,2}

¹Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder ²Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, Colorado ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California ⁴Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado

J. Geophys. Res. - Atmos., 119, doi:10.1002/2013JD020757, 2014.

Global Monitoring Annual Conference - 21 May 2014

The Instruments

Aura MLS

Near-global coverage ~3500 profiles per day 316 hPa to well above 0.1 hPa Low vertical resolution (~3 km) Operational since August 2004

NOAA FPH

Three sites world-wide Monthly vertical profiles Surface to ~20 hPa High resolution (5-10 m)

Boulder April 1980 -> Hilo December 2010 -> Lauder August 2004 ->

Period of Comparison: Aug 2004 - Dec 2012

Coincidence Criteria for MLS Overpasses of FPH Sites

Coincident MLS Profiles

Comparing FPH Profiles with MLS Median Profiles

Creating Profile Comparison Groups

Convolved FPH Profile Groups A and B

group B requires 95% coverage of FPH data before AK applied this severely reduces FPH data availability at the highest altitudes

MLS Coincident Profile Groups 1 and 2

group 2 employs slightly more relaxed spatial criteria but includes a matching criterion for Equivalent Latitude

FPH-MLS Difference Groups

A1

- A2 laxest criteria; largest Diff Group
- B1 strictest criteria; smallest Diff Group

B2

	Total	Coincident Profile Group 1		Coincident Profile Group 2	
Site	FPH Flights	FPH Flights	MLS Profiles	FPH Flights	MLS Profiles
Boulder	135	115	634	130	1294
Hilo	24	23	105	23	193
Lauder	97	96	352	95	929

Evaluation of FPH-MLS Biases

Mean differences ± 95% confidence intervals

Evaluation of Temporal Trends in FPH-MLS

Weighted Linear Regression Analyses

Regression Slopes for FPH-MLS

None of the B1 trends are statistically significant (95% confidence) Two statistically significant trends for A2 are inconsistent with B1

Minimum Detectable Trends

	<u>N</u>	<u>Avg Obs Trend ppmv yr-1</u>		<u>Avg MDT ppmv yr-1</u>
Boulder	8.4 yr	0.03 ± 0.01	(0.6 ± 0.2%)	0.04 ± 0.01
Hilo	2.1 yr	0.08 ± 0.11	(1.7 ± 2.4%)	0.84 ± 0.24
Lauder	8.4 yr	0.02 ± 0.01	(0.3 ± 0.3%)	0.03 ± 0.01

Conclusions

From 68 to 26 hPa the mean differences between FPH and MLS are <1%

Statistically significant biases as large as 0.46 ppmv (10%) exist at 100 and 83 hPa over Boulder and Hilo and at 100 hPa over Lauder.

Uncertainties of 10% in the abundance of water vapor in the UTLS have important implications for radiative transfer and climate models.

The vast majority of trends in FPH-MLS differences are not statistically significant, but ...

Most trends determined here are smaller than the minimum trends currently detectable in these data sets.

