

Amazon Basin-wide fluxes of CO₂ and CH₄ from aircraft vertical profiles (with support from CO and SF₆)

John B. Miller, Luciana Gatti, Manuel Gloor, and Luana Basso

Amazonian (and tropical) C-cycle is critical to understanding the global C-cycle

This spread, a *first-order uncertainty in climate prediction*, is largely a function of Amazonian response to climate. (Fire, deforestation, hydrological feedbacks all play a role).

→ We can quantify relationships between Carbon flux and climate over annual to decadal periods with accurate observations of both.

Amazonian C fluxes are underconstrained, because we don't have enough obs in the right places

Large Temp and Moisture Anomalies in 2010; 2011 returned to 'normal'

Temperature

Precipitation

Gatti et al., Nature, 2014

Aircraft vertical profiles sensitive to a large fraction of Amazonia.

- Aircraft vertical profiles from the surface to 4.4 km
- Sampling every two weeks.
- Measurements of
 CO2, CO and SF6
 (also other gases) at
 Gatti lab in Sao
 Paulo.
- → Measurements are differenced from Atlantic sites.

Gatti et al., Nature, 2014

Vertical profiles are collected using light aircraft

IPEN measurements are highly precise and compatible with NOAA's

Long term stability and accuracy better than 0.1 ppm (2 sigma).

Calculation of Amazonian site background using SF₆

- → By comparing vertical profiles of SF₆ with background SF₆, we can determine the relative influence of Northern and Southern Hemisphere air.
- → These fractions can then be applied to other gases to determine their background.

Average CO₂ and CO profiles by season show wet season uptake and dry season emission – but dry season emission is largely due to fire.

 $\Delta CO2 = CO2_{site} - CO2_{background}$

How we calculate fluxes of CO2 and CO... ...a 5 millon km² flux chamber (with a leaky top)

$$F_X = \int_{z=0(agl)}^{4.4 \, km(asl)} \frac{\Delta X}{t(z)} dz$$

$$F_{CO_2}^{NBE} = F_{CO_2}^{tot} - F_{CO_2}^{bb}$$

$$F_{CO_2}^{bb} = r_{CO_2;CO}^{bb}(F_{CO} - F_{CO}^{bio})$$

 $\Delta X = X_{site} - X_{bg}$

t = residence time of air on continent

r_{co2:co} = emission ratio of fires
(detected from obvious fire plumes)

 $F_{CO}^{bio} = F_{CO}$ in wet season

Basinwide CO₂ Fluxes

Gatti et al., Nature, 2014

Comparison to independent CO₂ fluxes

- 1. RAINFOR forest inventory plots give long term uptake of -0.4 PgC/yr
 - We find -0.25 in 2011, but this includes deforestation respiration. (i.e. deforestation is more than just fire.)
 - 2. If we assume a 2:1 ratio of fire:respiration in deforestation, then $F_{NEE} = -0.25 0.3/2 = -0.4$
- GFED fire emissions are +0.5 and +0.1 PgC/yr in 2010 and 2011.
 - 1. We observe +0.5 and +0.3 PgCyr.

Basinwide CH₄ Fluxes

Basinwide CH₄ Fluxes

Comparison to independent CH₄ fluxes

- 1. Kirschke et al (2013) Tropical S. America
 - 1. Top-down: 20-45 Tg CH4/yr
 - 2. Bottom-up: 40-90 Tg CH4/yr
 - 3. This study: 30 and 40 Tg CH4/yr
- 2. Bottom-up models can not reproduce the spatial pattern we see: high fluxes in the east.
- Will modeled fluxes show higher emissions in 2010 than 2011?

Conclusions

1. CO₂

- a. Moisture may be more significant than temperature in controlling Amazonian CO₂ flux (in contrast to Cox et al, Nature, 2013)
- Leaky box top how does convection impact fluxes? More work needed to quantify these losses. Seasonality is likely bigger than currently estimated.
- c. Basinwide seasonality shows wet season net uptake.

2. CH₄

- a. Basinwide fluxes are similar to other top-down estimates, but spatial patterns are different.
- b. Higher 2010 (dry year) fluxes remains a mystery.

 \rightarrow Sustained monitoring is needed to understand climate – carbon relationships (and thus have some confidence in future predictions).

CO time series

ALF

Amazonian C flux is currently woefully under-constrained

The "Residual dumping ground" of global inversions

Large Trends in Amazonian Climate

- Amazon temperatures rising over the last 20 years
- as everywhere else rising CO₂
- and there are also changes in the hydrological cycle: general upward trend, with dryer dry seasons and wetter wet seasons

Amazonian (and tropical) C-cycle is critical to understanding the global C-cycle

Stocks... (~25%)

While stocks and gross fluxes aren't predictors of net fluxes, they are keys to capacity for future changes. A Rep Net Flux What we see

...and Gross "Fluxes" (~15%)

Intensive Forest Plot Results show drought suppressed GPP in 2010.

Plant Carbon Expenditure = NPP + $R_{auto} \approx GPP$

Flux signals observed by site. -- Make new bar graph showing Basin Averages Total, Burning, Non-fire, for 2010 and 2011

Basinwide Fluxes

Sites