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Amazonian (and tropical) C-cycle is critical
to understanding the global C-cycle
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This spread, a first-order
uncertainty in climate
prediction, is largely a
function of Amazonian
response to climate. (Fire,
deforestation, hydrological
feedbacks all play a role).

- We can quantify relationships between
Carbon flux and climate over annual to decadal
periods with accurate observations of both.



Amazonian C fluxes are underconstrained, because
we don’t have enough obs in the right places
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Large Temp and Moisture Anomalies in 2010;
2011 returned to ‘normal’

Temperature Precipitation
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Aircraft vertical profiles sensitive to a large

fraction of Amazonia.
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Aircraft vertical
profiles from the
surface to 4.4 km
Sampling every two
weeks.
Measurements of
CO2, CO and SF6
(also other gases) at
Gatti lab in Sao
Paulo.

- Measurements
are differenced from
Atlantic sites.



Vertical profiles are collected using light aircraft

Analysis system at Gatti
Lab in Sao Paulo
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IPEN measurements are highly precise and
compatible with NOAA’s
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Calculation of Amazonian site background using SF,

—> By comparing vertical profiles of SF, with
background SF,, we can determine the
relative influence of Northern and
Southern Hemisphere air.

- These fractions can then be applied to
other gases to determine their background.
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Average CO, and CO profiles by season show wet
season uptake and dry season emission — but dry
season emission is largely due to fire.
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How we calculate fluxes of CO2 and CO...
...a 5 millon km? flux chamber (with a leaky top)

Barbados
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Amazonian Flux (Pg C yr™)

Basinwide CO, Fluxes
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Comparison to independent CO, fluxes

1. RAINFOR forest inventory plots give long
term uptake of -0.4 PgC/yr

1. We find -0.25 in 2011, but this includes

deforestation respiration. (i.e. deforestation is
more than just fire.)

2. If we assume a 2:1 ratio of fire:respiration in
deforestation, then Fy,=-0.25-0.3/2 =-0.4

2. GFED fire emissions are +0.5 and +0.1 PgC/yr
in 2010 and 2011.

1. We observe +0.5 and +0.3 PgCyr.



Basinwide CH, Fluxes
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Basinwide CH, Fluxes

= 2010 - DRY

= 2011 — WET




Comparison to independent CH, fluxes

1. Kirschke et al (2013) Tropical S. America
1. Top-down: 20-45 Tg CH4/yr
2. Bottom-up: 40-90 Tg CH4/yr
3. This study: 30 and 40 Tg CH4/yr

2. Bottom-up models can not reproduce the
spatial pattern we see: high fluxes in the east.

3. Will modeled fluxes show higher emissions in
2010 than 20117



Conclusions

1. CO,

a. Moisture may be more significant than temperature in
controlling Amazonian CO, flux (in contrast to Cox et al,
Nature, 2013)

b. Leaky box top —how does convection impact fluxes? More
work needed to quantify these losses. Seasonality is likely
bigger than currently estimated.

c. Basinwide seasonality shows wet season net uptake.
2.2 'CH,

a. Basinwide fluxes are similar to other top-down estimates, but
spatial patterns are different.

b. Higher 2010 (dry year) fluxes remains a mystery.

—> Sustained monitoring is needed to understand climate —

carbon relationships (and thus have some confidence in future
predictions).
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NEE (tonC/ha.yr)
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Amazonian C flux is currently woefully
under-constrained

The “Residual dumping ground” of global inversions

Ometto et al., 2005, Oecologia

S. American estimates vary widely
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...not so for the temperate north,
especially in the last ~ 5 years (more obs).



e Amazon temperatures
rising over the last 20
years

e as everywhere else
rising CO,

« and there are also
changes in the
hydrological cycle:

general upward trend, L AeniessTS 200
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Gloor et al. 2013, GRL



Amazonian (and tropical) C-cycle is critical
to understanding the global C-cycle

While stocks and gross
fluxes aren’t predictors
of net fluxes, they are "} Net Flux

keys to capacity for What we see
future changes.
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Intensive Forest Plot Results show drought
suppressed GPP in 2010.
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Flux signals observed by site. -- Make new bar graph showing Basin Averages

Total, Burning, Non-fire, for 2010 and 2011
Total Net Flux to Atmosphere
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