Measurements of bromine oxide, iodine oxide and oxygenated hydrocarbons in the tropical free troposphere from research aircraft and mountaintops

Rainer Volkamer, Sunil Baidar, Sean Coburn, Barbara Dix, MLO (since Jan 2014) Eric Apel, Brad Pierce, Ru-Shan Gao, Maria Kanakidou, and the IOKEKO Science team

TORERO – Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated voc

> NSF/NCAR GV (17 flights) RV Ka (cruise KA-12-01)

- BrO and IO vertical profiles
- Very short lived OVOC (few hours) Glyoxal, MEK, Butanal

US Dept of State Geographer © 2013 Geogle Data SIO, NOAA, U.S. Navy, NGA, GEBCO

RFO

KA-12-02

Oxidation of long-lived gases by OH is mostly in tropics

Kevin Wecht, Harvard

BrO comparison: GOME-2 with GEOS-Chem, p-TOMCAT

Satellite: 1-3 x10¹³ molec cm⁻²

(Chance et al., 1998; Wagner et al., 2001; Richter et al., 2002; Van Roozendael et al., 2002; Theys et al., 2011)

Ground : 1-3 x10¹³ molec cm⁻²

(Hendrick et al., 2007; Theys et al., 2007; Coburn et al., 2011; Coburn et al., 2014, in prep.)

Balloon: 0.2-0.3 x10¹³ molec cm⁻²

(Pundt et al., 2002; Schofield et al., 2004, 2006; Dorf et al., 2008)

Models: 0.2-1.0 x10¹³ molec cm⁻² (Saiz Lopez et al., 2012; Parrella et al., 2012) – in the tropics

Theys et al. [2011]

Halogens deplete the O₃ column by ~10% in the tropics (Saiz-Lopez et al., 2012) ~0.2-0.5 ppt BrO, and <0.1 ppt IO Parrella et al. [2012]

CU-AMAX-DOAS instrument aboard NSF/NCAR GV

University of Colorado Airborne Multi-AXis **Differential Optical Absorption Spectroscopy**

slant

forward/backward

Forward.

zenith, nadir

PC104

MMQ (INS/GPS) +

inclinometer

NI DAQ

card

Telescope pylon

Baidar et al., AMT 2013

Trace Organic Gas Analyzer (TOGA)

VOCs: NMHCs (C3-C10), OVOCs (C2-C9), HVOCs High selectivity GC/MS 2 minute continuous analyses of 50 VOCs Semi-autonomous operation up to 50,000 ft TORERO, DC3

TOGA on GV aircraft

Instrument designed to have very low limits of detection (low – sub pptv) Eric Apel Alan Hills Becky Hornbrook Dan Riemer (U Miami)

TORERO – Maiden Science Mission

CU AMAX - DOAS

Volkamer group

Parameters measured by CU AMAX-DOAS	Detection limit* / Accuracy
BrO	0.3 ppt **
IO	0.05 ppt
HCHO	100 ppt
CHOCHO	3 ppt
H ₂ O	5 ppm (590nm)
NO ₂	10 ppt
OCIO	0 7 ppt
HONO Aerosol extinction from O_4 at 360, 477, and 577nm	12 ppt 0.01 - 0.03 km ⁻¹

* 30 sec; ** 60 sec integration time

BrO and IO detection SH tropical troposphere

- NH/SH tropics:
- SH sub-tropics:
- SH mid-latitudes:

 $(1.5 \pm 0.3) \times 10^{13} \text{ molec cm}^{-2}$ $(1.7 \pm 0.3) \times 10^{13} \text{ molec cm}^{-2}$ $(1.0 \pm 0.3) \times 10^{13} \text{ molec cm}^{-2}$

Vertical profiles & comparison with models

- GEOS-Chem: underestimates BrO by a factor 2-4
- Box-model (organohalogens, aerosol SA) -> even less BrO

Interim Conclusions

- Ours are the first limb-observations of BrO and IO in the tropics
- BrO is detected regularly above 2-4 km; BrO and IO are abundant throughout the air column
 - Consistent with the GOME-2 satellite, ground-based MAX-DOAS data (Theys et al., 2011)
 - ~8 times higher than direct-sun profiles (Dorf et al.)
 - ~2-4 times more than predicted by models
- Measurements support ~10-15 pptv Br_y in the tropical UTLS (~5-6 pptv Br_y unaccounted ?)

Mauna Loa Observatory, Hawaii

SP.		
NE		
		A North
Spe	ctrometers	AL AL

-

Parameters	Detection Limit	Figures of Merit
BrO IO HCHO CHOCHO NO ₂ Extinction	0.3 ppt 0.05 ppt 100 ppt 3 ppt 10 ppt	 60s integration time Full scan: 27 min Footprint: 20-80km depending on aerosol load and wavelength Vertical profiles: ~3DoF

Widespread BrO, IO, glyoxal, and NO₂ in the FT

Ocean biology signature ?

Chl-a < 0.02 mg/m³ Chl-a ~ 0.2-0.5 mg/m³

- Oligotrophic ocean: ~ 15 pptv (10-20 pptv)
- Mesotropic ocean: ~ 28 pptv (20-35 pptv)
- FT: 5-15 ppt (Eastern) and 3-10 ppt (Central Pacific HEFT-10)
- Stratosphere: < 3 pptv no signal is detectable
- Glyoxal is widespread, possibly ubiquitous → a biogeochemical cycle

OVOC profiles

Lifetime

Aerosols

Conclusions

- The TORERO mission was very successful strong focus on technological innovation
 - first limb-observations of BrO and IO in the tropics
 - ~10-15 pptv Br_v in the tropical UTLS
 - What is the Br_y content in the lower stratosphere, and how much stratospheric Br_y reaches the UTLS?
- OVOC are widespread over oceans in the FT
 - Detected by multiple techniques (DOAS, GC-MS)
 - Unaccounted ocean source of marine organic carbon (can NOT be explained from isoprene, monoterpenes)
 - Most of the OVOC column resides in the FT
 - implications for aerosols, oxidative capacity?

Funding: NSF-CAREER award, NSF-AGS (TORERO)

Acknowledgements: NCAR/EOL and RAF, TORERO team

Glyoxal in particles: Field evidence

Arctic aerosol: Alert

Peak in early spring Few weeks earlier than diacids 3-4 times more GLY than MGLY

Alert: Kawamura et al., 1996 Mexico City: Volkamer et al., 2007 Continental (Tibet): Meng et al., 2013

Glyoxal is a ubiquitous product of anthropogenic and biogenic/marine precursors, and found in aerosols

Marine aerosol: Hokkaido Island

 $GLYg = 42 \text{ ng /m}^3 (18 \text{ ppt})$ P / (P + G) = 0.46

Marine: Matsunaga and Kawamura, 2004 Biogenic (Hyytiälä): Kampf et al., 2012 Southern Hemisph.: Rinaldi et al., 2011