A half-Century Record of State-by-State Changes in Fossil- Fuel Carbon Emissions and Corresponding Isotope Ratios in the United States

T. J. Blasing

Independent Scholar

Presented at the NOAA, GMD, ESRL Annual Conference, May 20, 2013

GUIDE TO VOLUNTARY SEPARATION INCENTIVE PAYMENTS

"I married you for better or for worse but not for lunch; find something to get yourself outta the house when you retire."

- - - - Carolyn Blasing

Sponsors: WORK

Sponsor: TRAVEL

T.J. and Carolyn Blasing Vacation Fund

Energy Information Administration (EIA)

State by state energy related carbon dioxide emissions by fuel back to 1980

http://www.eia.gov/environment/emissions/state/state_emissions.cfm

State by state energy related carbon dioxide emissions by fuel back to 1980 1960

Available from T.J. Blasing <u>t.j.blasing@outlook.com</u>

Methods Recalculate Emissions.

Recalculate all emissions from SEDS data.* Calculate emissions through 2010 by same method.

Unite the 2 data sets.

Calculate EIA/TJ for 1980-1984 Multiply TJ 1960's and 1970's by ratio TJ X EIA Use the result for 1960s and 70s USE EIA numbers for 1980 forward VOILA !! Continuous time series.

* Things have changed:

- 1. We now assume 100% Combustion.
- 2. Some heat and carbon coefficients have changed slightly.
- 3. Some fuel-use figures have been refined.
- 4. Other changes (See North Dakota)

Change in Per Capita Carbon Emissions (Mg/person-year) 1960-2010

Change in Per Capita Carbon Emissions (Mg/person-year) 2000-2010

Negative in all states but 5 (SD was -0.03)

Change in δ¹³C (per mil) in Emitted Fossil-Fuel Carbon: 1960-2010

Change in δ¹³C (per mil) in Emitted Fossil-Fuel Carbon: 2000-2010

Carbon Emissions from the 50 United States and the District of Columbia

Carbon Emissions from the 50 United States and the District of Columbia

(through 2012)

U.S. Energy Information Administration / Monthly Energy Review April 2014 Table 12.1 Carbon Dioxide Emissions From Energy Consumption by Source

U.S. Coal Exports

Increase in coal exports = 38.5 Tg-C; increase in natural gas exports = 19.4 Tg-C **Total increase in exported carbon = 57.9 Tg-C** Using MER heat coefficients and EPA carbon coefficients emissions.

Kaya Identity and Related Concepts

- **p** = population **GDP** = gross domestic product
 - **e** = energy **c** = fossil carbon emitted

 $= \mathbf{P} \cdot \mathbf{A} \cdot \mathbf{T}$

- Fc = airborne fraction
- Δc = change in atmospheric carbon

No wonder we're losing !!!

Carbon Emissions Population Gross Domestic Product Energy

Thanks for the memories

