

Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile $\delta^{13}CH_4$ analysis

Chris W. Rella⁽¹⁾, Eric Crosson⁽¹⁾, Anna Karion⁽²⁾, Gabrielle Petron⁽²⁾, Jon Kofler⁽²⁾, Colm Sweeney⁽²⁾

- (1) Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, California 95054 USA.
- (2) University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, and

National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA

Thanks to: Scott Herndon, Tara Yacovitch, Eric Kort, Amy Townsend-Small, David Lyon, Ramon Alvarez, Bob Harriss, Steve Conley, Sonja Wolter, and many more!

rella@picarro.com

Source: Quay et al. (1988) "isotopic composition of methane release from wetlands: implications for the increase in atmospheric methane" Glob. Biogeochem. Cycl. v2, 385-397.

Mobile $\delta^{13}CH_4$ Laboratory

ΡΙCΛRRO

Instrument $\delta^{13}CH_4$ Calibration

Barnett Shale (Ft. Worth Basin) – 6.8% of US prod.

- EDF Barnett Coordinated Campaign
 - Airborne measurements: U. Colorado / NOAA / Scientific Aviation / Purdue / Sander Geophysics / U. Michigan / Aerodyne, Princeton
 - Ground measurements: U. Houston,
 Picarro, Duke, Aerodyne, U. Cincinnati, UC
 Irvine, WVU, UT Dallas
 - Meteorology: Penn State

PICARRO

Barnett Shale – Gas Production

Barnett Shale – Oil Production

Methane Isotopes At All Length Scales

• Methane in the ground (from literature)

- Driving by methane plumes during the day
 - Single source ~ 0.01 km²

- MegaCore measurements in the nocturnal boundary layer
 - Dozens of sources: ~1 km²

- Flights in the daytime PBL
 - 100s and 1000s of sources, >100 km²

Wet Gas Has a Lighter $\delta^{13}CH_4$ Signature in the Barnett

Reproduced from J. Zumberge, K. Fernwon, and S. Brown, (2012): "Isotopic reversal ('rollover') in shale gases produced from the Mississippian Barnett and Fayetteville formations," Marine and Petroleum Geology 31, p 43-52.

Observed Atmospheric Signal: Isotopes and ethane / methane ratios

• Use the combined parameter ϵ to partition emissions

ΡΙCΔRRO

Partitioning emissions using ϵ

Results: Regional δ¹³CH₄ and ethane via MegaCore measurements

20130401: Observing the Local $\delta^{13}CH_4$ Source Signature

PICARRO

20130401: Isotopic Signature and C₂/C₁ Ratio in Different Regions

Weighted Sum of Observed O&G Fraction

- 2013 0401 includes Dallas, Ft. Worth, and O&G production areas (primarily dry gas)
 - Entire drive: O&G is 63% of total observed emissions
 - In production areas only: **79%** of observed emissions
 - wet only: 67% O&G
 - dry only: 82% O&G
 - no production: 16% O&G

- 2013 1027 Ft. Worth and O&G production areas (more wet gas areas than for 20130401)
 - Entire drive: O&G is 62% of total observed emissions
 - Excluding non-production area east of Ft. Worth:
 O&G is 69% of total emissions
 - Just the area east of Ft. Worth: O&G is 28% of total emissions

Estimated Error ~ +/-10%

Flight 20131019 – clear downwind plume

20131019

PICARRO

Bag Samples C01 – C12

Using a similar analysis as the MegaCore emissions fraction estimate (using E. Kort's ethane measurement to calculate the combined isotope – ethane parameter ε), we find:

O&G = 67%

NOAA flask Samples

PICARRO

Flight Partitioning Summary

- Summary of three flights
 - Note: 'B' flight was not a mass balance day
- 61 75% O&G emissions, consistent with MegaCore measurements (62-63%)

Flight	Bag CRDS Analysis	NOAA flask IRMS analysis
A: 20131016	75 ± 15% (A1 background)	
B: 20131017	$61 \pm 9\%$ (C2 background) 72 ± 13% (A1 background)	
C: 20131019	67± 15%(C2 background)	$67 \pm 17\%$ (F1 background)

uncertainty given by uncertainty in background delta (about $\pm 0.1\%$)

PICARRO

Conclusion: $\delta^{13}CH_4$ and Ethane are better together for emissions partitioning O&G producing regions

ESCAPÉ DONUTS

Thank You!!

*This work was funded in part by the Environmental Defense Fund

Analysis of MegaCore Regional Emissions

First we define the combined $d^{13}CH_4$ & ethane parameter ε : $\varepsilon = \delta^{13}CH_4 + 27.05C_2/C_1$

We then define the local fraction $f(s) = \frac{[\varepsilon(s) - \varepsilon_{landfill}]}{[\varepsilon_{O\&G} - \varepsilon_{landfill}]}$ at position *s*. In this

expression, $\varepsilon(s)$ is the intercept of a Keeling plot (using each MegaCore data point, along with a representative background data point, to interpolate the intercept), and $\varepsilon_{landfill}$ and $\varepsilon_{0\&G}$ are the two key end members for landfills and oil and gas, respectively.

We then calculate the overall fraction of the observed emissions from O&G from each MegaCore measurement using the following integral, where the observed regional ratio is weighted by the excess methane observed in that area:

 $F_{O\&G} = \frac{\int^{drive \, path} [C(s) - C_{background}] f(s) ds}{\int^{drive \, path} [C(s) - C_{background}] ds},$

where C(s) is the spatially dependent methane concentration and f(s) is the local O&G fraction.

Isotope Analysis of 20131016 flight "A Series"

Flight 20131016

PICARRO

Concentrations

Isotopes (Keeling Plot)

PICARRO

Isotope Analysis of 20131017 flight "B Series"

Flight 20131017 – low wind conditions

Concentration analysis

- Poor correlation
- Contamination? Then it would tend to be above the line
- Timing on the aircraft data?

PICARRO

Isotope analysis

- Using C2 as a background: O&G = 61% of emissions
- Using A1 as a background: O&G = 72% of emissions

- After calibration to bottles
- LO tank, injected into a tedlar bag on position #1, retrieved 1.784 ppm (+1.5 ppb above tank value) and -42.28 +/- 0.07 permil (0.02 permil above assigned value)
 PICΔRRO

5/22/2014

Isotope Analysis of 20131019 flight "C Series"

Individual End Members (33 sources total)

MegaCore: A Really Big Air Core

replay

- 1500' ft of 3/8" O.D. synflex tubing
- Sample ambient air during ~2 5 hour drive
- Playback sample into *i*CH4 analyzer for 15 - 30 hours in the laboratory

Isotope Analysis of Sample Bags

- 16 port selector valve (4 ports for calibration, 1 port for known sample in bag, 4 replicates / bag) ; instrument air dried (Nafion)
- LO tank, injected into a tedlar bag on position #1, retrieved 1.784 ppm (+1.5 ppb above tank value) and -42.28 +/- 0.07 permil (0.02 permil above assigned value)

1000 - MegaCore Sampling in the Barnett

Isotope Measurements in "Lab 322"

