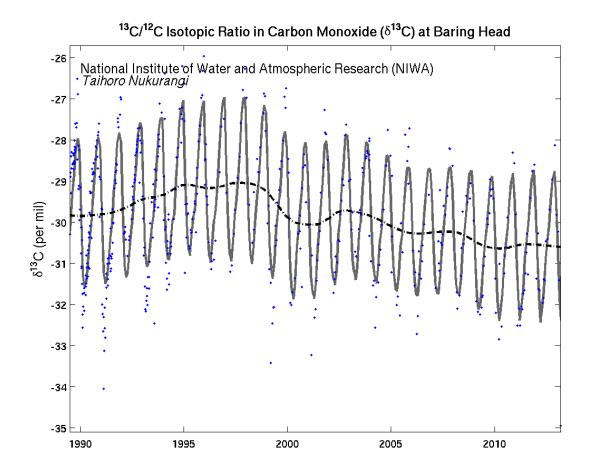
Carbon Monoxide Concentration and Isotope Measurements in New Zealand


R. Moss¹, G. Brailsford¹, M. Manning² and H. Schaefer¹

¹National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand; 64-4-386-0534, E-mail: Rowena.Moss@niwa.co.nz

Carbon monoxide (CO) is a highly reactive atmospheric trace gas, with a lifetime between 2 and 4 months. The reaction of CO with the hydroxyl (OH) radical is the dominant removal process for both species. As a result, changes in CO can dramatically alter the oxidative balance of the atmosphere and have an impact on a wide range of other trace gases. Each source of CO has a unique isotopic signature, so measuring δ^{13} CO for example, can provide more detailed information on where change is occurring. In contrast, 14 CO is mostly produced by neutrons interacting with nitrogen to form 14 C, which is then oxidised into 14 CO. As a result, 14 CO can be used as an effective tracer for the OH radical (*Manning et al*, 2004). More than 20 years of measurements of CO and its isotopes will be presented, based on samples collected from NIWA's clean air station at Baring Head (41.4°S), near Wellington, New Zealand.

References:

Manning, M. R., et al., (2005), Short-term variation in the oxidizing power of the atmosphere, *Nature*, 436(7053), 1001-1004.

Figure 1. Time-series of δ^{13} CO from Baring Head, New Zealand.

²Victoria University of Wellington, Wellington, New Zealand