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New measurements of column-integrated atmospheric CO, concentration
have become available in the past few years with more complete spatio-
temporal coverage than have been available from the traditional in situ
network -- potentially allowing greater detail in the surface sources/sinks of

Net annual flux, 2009;2\014: Transcom LAND regions Net annual flux, 2009-2014: Transcom OCEAN regions

CO,; to be estimated. ' _ Different a priori estimates of global time-varying 3-D CO, concentration have been ., -
The following CO, tracers were run forward through the off-line created for 2009-2014 by adding tfogether a tracer from each of categories 1-3 (land 1 (fossil fuel removed) == Prior B . =
In particular, CO, mixing ratios measured from solar radiation reflected PCTM atmospheric tracer transport model (Kavya, et al. t 2004). bio, ocean, and fossil). Because the land biosphere models above are close to being flux- 3.0 7 s Post., tight prior N 0.6 — |
from the surface in the near-infrared (1.6 and 2.0 ym bands) allow sensitivity The fluxes from most models ended in 2012; climatologies were neutral across any given year (i.e., do not include realistic land uptake), a multiple of i mmmmm Post, loose prior | '
to the full atmospheric column, including the lower troposphere where created from the years available for use in 2013-2014: respiration for each model, along with a global constant offset, has been estimated for ] & N i I
surface CO, fluxes have their largest impact. The TANSO instrument _ _ each combination to match the observed growth rate at Mauna Loa across 2009-2014. 2.0 — . OE A bly-tiaht T l i
aboard the Japanese Greenhouse Gases Observing Satellite (6OSAT) has 1 D'Ur""“-‘IIY‘VG'"Y'“Q net ecosy§‘rem exchange (NEE) and Similarly, alternative versions of the CarbonTracker fluxes have been created by ] (@1 @f@o@ £l reasonably-Tig A - 0.3 — —
been measuring the full-column dry air mixing ratio of CO, (*X0,") since its respiration from the following land ecosystem models: replacing its own fossil emissions with either CDIAC or FFDAS; a correction using a _ . GRS ux prior prevents £ . .
launch in early 2009. Recently a 5+ year span of this data (April 2009 - June *  CASA-GFED (from Jim Collatz, NASA/GSFC) - multiple of the CASA land biospherc fluxes has been solved for in those cases. 5 0 4 the large uptake in - = ] i
2014) has been re-processed using consistent calibration and retrieval wild-fires and biofuels included as explicit fracers QA Europe [ S 00 n
schemes by NASA's Atmospheric CO, Observations from Space (ACOS) *  SiB4 (from Kathy Haynes, Colorado State) The various model fluxes have been interpolated to the 2.0° x 2.5° (lat/lon) resolution of a, ] [ o i |
group at JPL and CSU, using its latest b3.5 retrieval approach. *  SiB3 (from Ian Baker, Colorado State) the MERRA meteorological drivers for these forward PCTM runs. The resulting CO, x . - X
concentrations are sampled using the vertical averaging kernel and prior CO, profile used = 0.0 7 = ) i
Here, we use an atmospheric inversion approach to infer the surface sources 2. MonIhIY varying air-sea CO, fluxes from the following: in the ACOS GOSAT retrievals, then compared to the bias-corrected retrievals, to %’ - 2 -0.3 — —
and sinks of carbon that caused the observed patterns in X.o,. A variety of The NOBM ocean model (from Watson Gregg, obtain model-data mismatches. RMS error statistics for these mismatches are given ] . =
different models of land biospheric, air-sea, and fossil fuel emission fluxes NASA/GSFC). below. -1.0 — i B
are run forward through the PCTM atmospheric transport model, added in *  The Takahashi, et al (2009) pCO, and CO, flux i 06 — L
various combinations to form a priori estimates of global CO, mixing ratios, product ' The following sub-set of flux model combinations were used as a priori fluxes in separate . - } i
and then compared to the globally-distributed X, fields retrieved from *  Ananthropogenic run of the Doney ocean model GOSAT inversions, performed using the 4DVar carbon data assimilation system of Baker et 20 — The GOSAT data drive large outgassing of CO, [
GOSAT. Inversions are performed using several of these prior estimates - (Scott Doney & Ivan Lima, Woods Hole al (2006). Weekly CO, flux corrections were estimated at 7.5°x7.5° resolution (lat/lon) . in North Africa and Temp. Asia, balanced by - ’ i
comparing the resulting CO, fluxes then allows the dependence of the final Oceanographic Inst.) then added to the 2.0°x2.5° prior to obtain the final estimates: ’ greater uptake in Europe and other regions . -0.9 — —
CO, flux estimate on the assumed a priori fluxes to be assessed. The . ) o ) . _ . . . .
senzsi’rivify of the resulting GOSAT-if\for'med fluxes to the tightness of the 3. Fossil fuel burning emissions from the following models: ‘ CASA GFED NEE+fires+fuel; Takahashi et a/ (2009) ocean, hourly FFDAS fossil gj EI J _I I I UJI _|I _|I I I ZI EI rrI cnI ZI ZI _|I cnI cnI J [
; - - «  CDIAC monthly-varying product (Andres et al. 2013) 5iB4 NEE, Doney ocean, hourly FFDAS fossil: 3 3 S z » 9 2 3 Z  m ; ; : - 5 i o S @
assumed flux prior and to the type of GOSAT data used was investigated. y-varying p S €7 . : ) e @ s 3 3 3 S = c o - W o B 8 > ° =
+  FFDAS monthly-varying product (Asefi-Najafabady) Ocean glint, land M- and H-gain data g © g ° zZ & = © P & 3 8 g 8 0 5 = B = 9 S 3
«  FFDAS product with diurnal, day-of-week, and * land M- and H-gain (ho ocean) S S > 2 8§ 8 > z & % 3 = 2 g F o 2 £ 2 D = )
monthly variability (Asefi-Najafabady et al., 2014) * Land H-gain, only o 3 3 3 3 = = o © o © ' © S g
* CarbonTracker-2013 a posteriori fluxes The GOSAT-dri na in North Afri
4. The a posteriori estimate of total flux (land biosphere + ocean In addition to inversions with the prior flux constraint applied at a typical degree of and 'Ie'emp. Asia I;;vfgnﬁ:%%szl[?ﬂrlg ThoerI\IH wI‘rﬁZr. Net fluxes by season, 2009-2014: Transcom LAND regions
@ + fossil fuel + wild fires) from CarbonTracker-2013 ( tightness, a parallel set of inversions are performed with the prior flux uncertainty applied ’
d 2 http://carbontracker.noaa.gov). Through the end of 2012, the at a level 10,000 times looser (“loose prior"). The results of these inversions show where L 2N '\ I e T s e T B B N —r 111
CT fluxes have been optimized against surface in situ CO, the GOSAT data want to drive the flux result, almost completely un-constrained by the 04 Jan-Mar — Fodianpio  [404  Apr-June — E: it { July-Sept — E: wiwo || Oct-Dec — ES;’:’.,FQM o |

= Post., lo0se prior

measurements. prior fluxes. 20

>
o
|

ACOS b3.5 GOSAT Xq, retrievals for Apr 2009 to June 2014
from Chris O'Dell's “lite" Level 2 product were used, with the

0.0 —mymwwmmmmmn T T T T

Net flux [PgC/yr]
N
(=]
1

following scenes being screened out, in addition to those (e.g. o :
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