Observations of trace gases and methane at the Cape Verde Atmospheric Observatory
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/“Introduction

Figure 1: The CVAO site, which was expanded in December 2014 to include new
laboratory space and a permanent 10m tower.
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The Global GAW Cape Verde Atmospheric Observatory (CVAO) —Humberto Duarte Fonseca is situated in Calhau on
the island of Sao Vicente in Cape Verde (16.848°N, 24.871°W). Measurements were started in October 2006 to
further our understanding of atmospheric chemistry within the tropical marine boundary layer. Funding for the UK
trace gases is through the Atmospheric Measurement Facility (AMF) which is a subsidiary of NCAS (National Centre
for Atmospheric Science) in the UK. Staff are provided through the Instituto Nacional de Meteorologia and
Geofisca (INMG), Cape Verde and other measurements (e.g. of greenhouse gases and aerosol) are supported by
our partners at Leibniz-Institut fur Tropospharenforschung, Germany, Max-Planck Institut fur Biogeochemie,

&ere we give an overview of the measurements and some of the science presently coming out of the Observatory.
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Figure 2: The 29 Global GAW Stations http://www.wmao.int/pages/
prog/arep/gaw/measurements.html
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Figure 3: Temperature and relative humidity time-series’ from the CVAO.

Understanding methane and ethane trends
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Figure 7: CVAO methane concentrations, plotted with NH model
projections of cumulative methane based on emission data from
the US Energy administration (1.8%) and from (Howard, 2011)
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Figure 4: Time-series’ of methane and ethane, ethane data is time-matched to the MPI methane flask data (~3 flasks per month).
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Figure 5: Monthly ethane versus methane, all data (blue), summer during the summer months.
only (red) and winter only (green) data are plotted.
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Figure 6a) left Percentage difference between the monthly methane concentrations and the average monthly methane over 8 years. b)
right, as methane but for ethane and coloured by season.
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Data quality and archiving: BADC and WDCGG
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Figure 8: CO measurements using three techniques, Aerolaser VUV-Fluorescence (grey), LGR Off-axis ICOS (blue), flask and subsequent GC analysis (red).

Data is submitted regularly on daily, monthly and yearly timescales to the World Centre for the Greenhouse Gases

(WDCGG) http://gaw.kishou.go.jp/wdcgg/ and to the British Atmospheric Data Centre (BADC)

http://badc.nerc.ac.uk/home/index.html along with associated instrument metadata. Through GAW the CVAO O,

and CO data is submitted to the MACC (Monitoring atmospheric composition and climate) project. Data is
submitted in near-real-time and global modelled gas concentrations are validated with this data:

http://www.gmes-atmosphere.eu/d/services/gac/verif/grg/gaw/

The CVAO performed well in a GAW audit for CO, O; and the greenhouse gas species (CVO_2012.pdf) and this and

other relevant reports (in particular Nos 171, 195) are available at
http://www.wmo.int/pages/prog/arep/gaw/documents/
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Tropospheric ozone and other trace gases
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Figure 9: Time-series of ozone, hourly (grey), monthly (red).
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Figure 10: Time-series of NO daily (red dot), monthly (red line) and NO2 daily (blue dot), monthly (blue line).
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Figure 12: Air mass
classifications using
the NAME model
(L.J. Carpenter etal.,
J. Atmos. Chem,
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Figure 13: Time-series’ of Total Gaseous Mercury (TGM)

Delta ozone filtered by air mass shows a negative correlation with
the NO 12pm peak in mixing ratio (Figure 14) consistent with its
role in the formation of tropospheric O,. Modelling suggests that
a persistent concentration of 17-34 pptV NO could push the
region into a net O, producing regime (perhaps 5-10 years away)
(Lee et al, 2009).

NO (pptV)

Modelling of the O; diurnal suggests that in addition to low NO,
halogen oxides may play a major role in the removal of
tropospheric O, in the wider marine environment (since the
CVAO provides data considered by GAW to be representative of
at least the North Atlantic ocean if not of the global ocean).
(Read et al., 2008, Nature)
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Figure 14: NO (pptV) at 12pm against delta O; (9am-6pm).
The numbers correspond to the air mass classifications in

35 4

uture plans

‘F

\

An interferometer will be installed in June to make upper atmosphere wind measurements (NCAR).
e The lce in Clouds Experiment-Dust (ICE-D) flying campaign is taking place around the Cape Verde islands in July-
August 2015. The aircraft will be based on Praia but will do some flights around the CVAO. A bio-aerosol
spectrometer will be installed at the CVAO.
e HONO will be measured during a short campaign in the Autumn to try and understand some of the NOy questions.
Investigation of NOy speciation and NOx budget.
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For access to the CVAO please go to: https://www.ncas.ac.uk/index.php/en/amf-menu
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