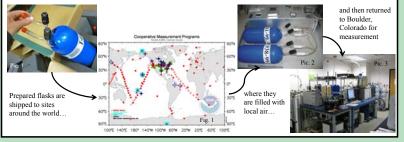


Ensuring High-Quality Data from NOAA's Cooperative Global Air Sampling Network

M.J. Crotwell^{1,2}, E.J. Dlugokencky², P.M. Lang², D.H. Neff^{1,2}, A.M. Crotwell^{1,2}, E. Moglia^{1,2}, J. Mund^{1,2}, and K. Thoning²

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309;

Phone: 303-497-4728, E-mail: Molly.Crotwell@noaa.gov


Introduction

• NOAA/ESRL/GMD Cooperative Global Air Sampling Network started in the 1960s and now includes weekly samples at ~60 sites (Fig. 1, red circles).

• Prepared flasks are shipped to a site, air samples are collected in series in two flasks, and then the flasks are returned to Boulder, Colorado for measurement (Pics. 1-3).

• In 2015, more than 6,000 discrete air samples collected from this network were measured for atmospheric CO_2 , CH_4 , CO, H_2 , N_2O , and SF_6 .

• Data quality assurance (QA) and quality control (QC) are fundamental parts of our long-term data records.

Summary and Conclusions

Data from NOAA/ESRL/GMD's Cooperative Global Air Sampling Network are vital to large-scale studies of atmospheric CO₂, CH₄, N₂O, SF₆, and CO.
To be most effective, these long-term data records must be carefully scrutinized so samples with collection or measurement problems are identified.

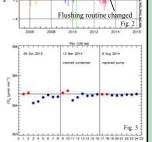
• Quality assurance and quality control (QA/QC) are performed with several different methods and programs developed in GMD. This includes:

- Monitoring flow rates, flask pressures, and reference gas responses from every analysis performed.
- Comparing results from flask pairs, different gases, different sites, and different sampling methods.

Remaining Issues

- Assign uncertainties for CO₂, N₂O, and SF₆.
- Create a sample collection video to use as a tutorial for site staff turn-over.
- Increase site visits or bring sample collectors to Boulder for training when needed.
- Increase our supply of spare samplers (PSUs) and parts.
- Administrative issues: keeping contracts current, shipping problems/delays

Data Quality Assurance <u>Measurement:</u>

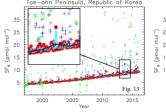

Gas	Technique	Calibration
CO ₂	NDIR	3 standards
CH ₄	GC FID	1 standard
N ₂ O/SF ₆	GC ECD	8 standards offline relative to reference
CO	VUVRF	6 standards offline relative to reference and a "zero"
H ₂	HePDD	1 standard
		MAGICC1 Target Tanks

• QA is performed in the CCGG measurement lab with daily control flasks, weekly field samples, short-term target tanks analyzed every two weeks, and long-term target tanks analyzed twice per year.

• Fig. 2 shows short-term target tank results for CH_4 since 2005.

Equipment and Training:

• All portable sampling units (PSUs) are tested in Boulder before they get deployed to a field site (Fig. 3). • Flasks are prepared with fill gas before they are shipped to a site. • Budget constraints prohibit routine site visits and technician training in Boulder.


New instrument installed

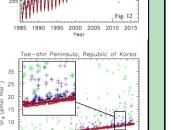
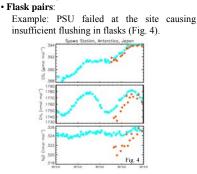
Selection of Data for Spatial Representativeness - Ensure data can be compared with model results

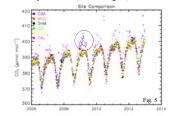
Ga	1 <u>5</u>	Filtering Technique
CC) ₂	Symmetrical statistical filter
CH	I4	Consider other species
N_2	O/SF ₆	Non-symmetrical stiff filter

• CO₂ is selected by fitting a smooth curve, then iteratively flagging values outside $\pm 3-\sigma$ (Fig. 12).

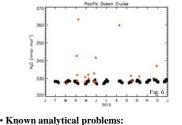
• For N₂O and SF₆, a stiff fit and asymmetrical filter is used. Fig. 13 and 14 compare loose and stiff filters for SF₆ at TAP.

Alert, Nunovut, Conodo 395 375 555 555 1980 1990 1995 2000 2005 2010 201


Fig. 14

2015



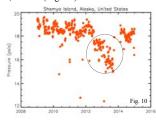
Data Quality Control

Sites at similar latitudes: Example: Leak in sample collection system at Cold Bay, Alaska (CBA, Fig. 5).

• Flask sample contamination: Example: High N₂O at certain sites with, as yet, unknown cause (Fig. 6).

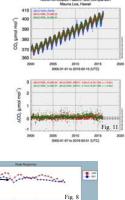
Example: Anomalous results caused by measurement delays (Figs. 7 and 8).

Delay or



Example: Sampling location moved closer to local sources at the airport (Fig. 9).

• Flask pressures during measurement:


Example: Equipment problems at Shemya Island, Alaska (Fig. 10).

• Independent measurements (co-located or same-air comparisons):

Example: Mauna Loa CO_2 flask results compared to in situ data (Fig. 11).

