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Permafrost soil C

Soil Organic Carbon
0.1-20kg m™
I 20-40kgm™
40 - 75 kg m™
I 75-100kgm™
B 100- 150 kgm™
B 50-260kgm™

Hugelius et al. Biogeosciences 2014 °



Objectives

« Refine rates, patterns, and controls on trace gas fluxes in the Arctic
- Better define the seasonal pattern on trace gas fluxes in the
Arctic
- Better define the spatial heterogeneity of fluxes in the Arctic
- Better predict future greenhouse gas feedbacks
« Integrate observations, experiments, and modeling




Primary towers in Barrow




CO, and CH, fluxes in the Arctic, Alaska
Different approaches
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Annual CH, fluxes North Slope Alaska

CH, Flux (mg C -CHsm 2 hr")
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2013 Inundation from AMSR-E

Inundation:

Blue >10%

Lt. Blue 2-5%

Grey 1-2%
White <1%
Contour Intervals 5%

Du, Kimball, et al. 2014
Watt et al. 2012



2013 Inundation for study regions

from AMSR-E
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Barrow BES Half hour data + daily average flux
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Methane Flux
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Soil Temperature Distributions

Soit T 2014, BES
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CO,, CH,, Radon, Diffusivity
and Flux System
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NASA CARVE
Aircraft Concentrations and Remote Sensing




NASA CARVE Aircraft CH,
Concentrations
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Footprint WRF STILT (Stochastic Time-
Inverted Lagrangian Transport) Modeling
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North Slope Alaska Fluxes Aircraft vs. Tower
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Terrestrial Carbon Flux (TCF) model

simulations of daily methane (CH,)
using SMAP, MODIS, MERRA Climate data
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Conclusions

U The cold period is a critical contributor to annual CH, fluxes in the Arctic.
U Based on rates presented here, annual Arctic CH, emissions are ~27 Tg
which ~50% occur in the cold season.

U Past models and atmospheric inversions have often been in error by
assuming near zero CH, fluxes the cold period.

U Fall “zero curtain” CH, fluxes can be substantial compared to summer fluxes
1 Methanogenesis continues in the saturated unfrozen layer.
 Methanotropy, on the other hand, is suppressed by fall freezing.

[ The relative impact of zero curtain emissions on annual fluxes is greatest in dry
sites where methanotropy is highest in the summer. So, drier sites may be
significant methane emitters.

L Extension of the zero curtain under future climate conditions could have
significant impacts on annual emissions.

 Long-term measurements and high resolution models can set the baseline
against which change in CH, fluxes can be detected.
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NOAA EPP SDSU Interns

 SDSU is a Hispanic serving institution.

 We submitted to the NOAA EPP (NOAA Education
Partnership Program)/MSI with the NOAA-
Cooperative remote Sensing Science and
Technology Center (NOAA-CREST)

e |f successful, the goal is is to engage more students
into stem disciplines including URM.



Midnight over the Arctic Ocean

Thank you
Questions?
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North Slope Alaska Fluxes Aircraft vs. Tower
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Footprint WRF STILT (Stochastic Time-
Inverted Lagrangian Transport) Modeling
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Conclusions

U The cold period is a critical contributor to annual CH, fluxes in the Arctic.
U Based on rates presented here, annual Arctic CH, emissions are ~27 Tg
which 11 Tg occur in the cold season.

[ Models and atmospheric inversions have often been in error by assuming
near zero CH, fluxes the cold period.

U Fall “zero curtain” CH, fluxes can be substantial compared to summer fluxes
1 Methanogenesis continues in the saturated unfrozen layer.
 Methanotropy, on the other hand, is suppressed by fall freezing.

[ The relative impact of zero curtain emissions on annual fluxes is greatest in dry
sites where methanotropy is highest in the summer. So, drier sites may be
significant methane emitters.

L Extension of the zero curtain under future climate conditions could have
significant impacts on annual emissions.

M Long-term measurements and high resolution models can set the baseline
against which change in CH, fluxes can be detected.



NASA CARVE
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Soil Temperature Distributions

Soit T 2014, BES
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CH Flux (mg C - CH, m? day™")

CH, Flux {mg C - CH, m? day™")

Annual CH, fluxes North Slope Alaska
2013-2014
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CH, Emissions vs Active Layer Temperature
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CARVE Aircraft CH, Concentrations
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