Measuring the effects of Arctic climate change: CH₄ emissions at the NOAA Point Barrow Observatory

Colm Sweeney^{1,2}, Ed Dlugokencky², Charles Miller³, Steve Wofsy⁴, Anna Karion^{1,2,*}, Steve Dinardo³, Rachel Y.-W. Chang⁵, John Miller², Lori Bruhwiler², Andrew Crotwell^{1,2}, Tim Newberger^{1,2} Kathryn McKain^{1,2}, Robert Stone¹, Diane Stanitśki², Sonja Wolter^{1,2}, Patricia Lang², Pieter Tans²

¹University of Colorado, Boulder CO, 80309 ²NOAA/ESRL, Boulder CO, 80305 ³Jet Propulsion Lab, NASA, Pasadena, CA 91109 ⁴ Harvard University, Cambridge MA, 02138 versity of Dalhousie, Halifax, Nova Scotia, B3H 4R2 Canada

Evidence of rapid climate change in Arctic

Sea Ice Extent (NSIDC 2016)

Land Temperature (NASA/GISS 2015)

Arctic Reservoirs

>1000 PgC could be released as CH₄ or CO₂

Fossil Fuel CO₂ emitted since 1751: ~350 Pg

Arctic Land Vegetation: 60-80 Pg C Soil: 1200-1800 Pg C

Continental Slope permafrost/hydrate 2-65 Pg CH₄

Arctic Ocean floor 30-170 Pg CH₄

Barrow Observatory

1973 - Present

Aerosols - insitu Meteorology – winds, temp Halocarbons – Insitu, CFC, Chloroform etc. GHG Gases – Insitu/flasks CO_2 , CH_4 , N_2O , CO, etc. Hydrocarbons – ethane -> pentane Ozone – Insitu Radiation – albedo

Evidence of rapid climate change in Arctic

Sea Ice Extent (NSIDC 2016)

Snow Cover (Stone/Stanitski)

Land Temperature (NASA/GISS 2015)

 $0.5 \rightarrow 1.2^{\circ}C/decade$

~20 day increase in days without snow

Evidence of rapid climate change in Arctic

Sea Ice Extent (NSIDC 2016)

Snow Cover (Stone/Stanitski)

Land Temperature (NASA/GISS 2015)

2.1°C/decade

~20 day increase in days without snow (in past 30 years)

Southern sector shows consistent enhancement above background

CH₄ at Barrow Observatory

CH₄ at Barrow Observatory

Average enhancements of >70 ppb from southern sector in late summer.

Land sector

Clean air sector

- Mean seasonal cycle is quite different from the background
- Background very similar to other sites to north and south

CH₄ at Barrow Observatory

Seasonal cycle from the North Slope

Emissions last from June through December Soil temperatures may control CH₄ emissions

Soil T (C)

CH₄ at Barrow Observatory

Average enhancements of >70 ppb from southern sector in late summer.

Land sector

Clean air sector

Trends in ΔCH_4 and temperature

CH₄ enhancements Temperature The long term record at Barrow does not suggest that early winter (Aug-Dec) enhancements have changed over the last 29 years

Trends in ΔCH_4 and temperature

CH₄ enhancements Temperature Possible CH₄ enhancement in the last 5 years in November and December

Trends in ΔCH_4 and temperature

CH₄ enhancements Possible CH₄ enhancement in the last 5 years in November and December

$\Delta T v. \Delta CH_4$

Monthly deviation in temperature verses ΔCH_4

Short-term trend: Monthly deviation in temperature trend verses enhancements in CH₄ from North Slope. Suggests significant short term response in CH₄

What is the big deal?

Long Term (29 years):

• Increase in T = 3.5 ± 2.3°C

Increase in 4 ± 6 ppb CH₄
= 1.1 ± 1.8 ppb CH₄/°C
Short Term (~1 month)
= 5.0 ± 3.6 ppb CH₄/°C

What is the big deal? **By 2080 temperatures Arctic early** winter may increase by 3-6°C: Long-term response \rightarrow -2–17 ppb CH₄ Short-term response \rightarrow 15–30 ppb CH₄ = -3 - 45% of average enhancement If current natural emissions are 19 Tg of CH_{4} out of 553 Tg of CH_{4} /yr:

= 1.5% increase in Global emissions

Conclusions

- No detectable change in CH₄ despite large temperature changes - A top-down analysis of methane in the Arctic does not indicate that there is a significant trend in methane outgassing in the North Slope despite observed increases in temperature.
- Seasonal cycle Starts in June and continues through December despite heavy snow accumulation well before that.
- Temperature sensitivity We only see short-term correlations.
- Global significance Not much (sorry!)

What is happening to the Organic Carbon

"Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff" (Liljedahl et al. 2016)

What is happening to the Organic Carbon

"Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff" (Liljedahl et al. 2016)

40 year $\triangle CO_2$ record at BRW

What is happening to the Organic Carbon

"Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff" (Liljedahl et al. 2016)

40 year $\triangle CO_2$ record at BRW

Conclusion

- Despite large changes in climate observed at Barrow and an observed short term response in CH₄ there has been currently no significant increase in CH₄ over the last 29 years at BRW.
- Even if there were a change in CH₄ emissions it would have a small impact on the global budget.