# High-accuracy, high-precision, high-resolution, source-specific monitoring of urban greenhouse gas emissions? Results to date from INFLUX



Jocelyn Turnbull, National Isotope Centre, GNS Science, New Zealand and CIRES, University of Colorado, Boulder, USA

Colm Sweeney, Kathryn McKain, Anna Karion, Mike Hardesty, Isaac Vimont, Natasha Miles, Scott Richardson, Thomas Lauvaux, Kenneth Davis, Brian Nathan, Kai Wu, Alexie Heimberger, Paul Shepson, Kevin Gurney, Risa Patarasuk, Scott Lehman, James Whetstone



### INFLUX motivation and goals Indianapolis Flux Experiment (INFLUX)

### • Motivation

- Anthropogenic greenhouse gas (GHG) emissions are uncertain at local / regional scales, where emissions mitigation will happen.
- Validation of emissions mitigation will require independent measurements.
- Atmospheric GHG measurements can potentially provide such independent emissions estimates.

### Goals

- Develop and assess methods of quantifying GHG emissions at the *urban scale*, using Indianapolis as a test bed.
- Determine whole-city emissions of CO<sub>2</sub> and CH<sub>4</sub>
- Distinguish biogenic vs. anthropogenic sources of CO<sub>2</sub>
- CO<sub>2</sub>ff source sector attribution
- Quantify and reduce uncertainty in urban emissions estimates
- Evaluate and improve bottom-up data products

# **INFLUX** toolbox

- Stationary atmospheric observations:
  - 12 GHG Towers with in situ  $CO_2$ ,  $CH_4$ , CO
  - 6 flask samplers <sup>14</sup>CO<sub>2</sub>, other trace gases
  - Doppler lidar
  - 4 eddy covariance flux towers
- Mobile atmospheric observations:
  - periodic aircraft flights (GHG, met, flasks)
  - periodic automobile GHG sampling
- Emissions products:
  - Hestia (250m resolution, Indianapolis)
  - ODIAC (1km resolution, global)
- Modeling system:
  - WRF-Chem, 1km, nested, with meteorological data assim.
  - Lagrangian Particle Dispersion Model.
  - Bayesian matrix inversion.
  - Modeled and directly observed GHG lateral boundary conditions.



Communications towers ~100 m AGL

# INFLUX TOWER NETWORK Inversion-based flux estimates





Picarro, CRDS sensors 12 measuring  $CO_2$ 11 with  $CH_4$ 5 with CO



6 NOAA automated flask samplers 50 species

# [CO<sub>2</sub>] at INFLUX towers

- Afternoon daily
   [CO<sub>2</sub>]
- Seasonal signal is apparent
- Significant

   overlap between
   sites (weather driven variability)



Miles et al, in prep

### **Model framework**



Combination of tower surface footprints with prior CO<sub>2</sub> emissions to generate modeled mixing ratios

Inversion to optimize the Hestia prior emissions

Lauvaux et al, in press; Gurney et al., 2012

### Inversion: Indianapolis whole-city CO<sub>2</sub> emissions



Sept12 – Apr13 Indianapolis  $CO_2$  emissions:

Hestia bottom-up: 4.6 MtC

Inversion: 5.7 MtC +/- 0.2 MtC

### Impact of $CO_2$ ff observations on an inversion OSSE: $CO_2$ ff observations recover signal lost due to biological fluxes



reduction in the prior error

#### Wu et al, in prep

### How can we constrain CO<sub>2</sub>ff?

Flask <sup>14</sup>CO<sub>2</sub> determines CO<sub>2</sub>ff

BUT limited flask data (~ 6 samples/month)

Need higher temporal resolution CO<sub>2</sub>ff



# In winter, $\delta CO_2$ approximates $\delta CO_2$ ff



Flask measurements of  ${}^{14}CO_2$  to determine  $CO_2$ ff In winter,  $\delta CO_2$  can be entirely explained by  $\delta CO_2$ ff But not in summer!

Turnbull et al., 2015

# CO as a proxy for CO<sub>2</sub>ff throughout the year



CO is co-emitted with CO<sub>2</sub>ff

When emission ratio  $R_{CO}$  is known, determine  $CO_2$ ff from in situ CO at high resolution

Determine emission ratio R<sub>co</sub> from afternoon flask data

Varies by tower – differing source mixture in footprints of each tower

Turnbull et al., 2015

# Derive diurnally varying R<sub>co</sub> from Hestia bottom-up data product



Assign time-varying  $R_{CO}$  based on Hestia bottom-up data product Upcoming refinement: convolve modelled footprints and Hestia for tower- and time-specific  $R_{CO}$ 

Turnbull et al., 2015



# Mass Balance method : whole city CO<sub>2</sub> flux determination from aircraft



#### Heimberger et al., in prep

### Mass Balance whole city CO<sub>2</sub> flux determination from aircraft



Use mass balance technique to determine whole-city emission flux for each flight date

#### Heimberger et al., in prep

### **Aircraft Mass Balance Method**



Molar CO<sub>2</sub> enhancement in air layer



References: White et al., 1976; Ryerson et al., 2001; Cambaliza et al., 2014

### **Mass balance emission rates**





|                    | Emission rate<br>(mol/s) |
|--------------------|--------------------------|
| CO winter 2014     | 108 (16%)                |
| $CO_2$ winter 2014 | 14,600 (17%)             |
| CO summer 2015     | 172 (64%)                |

#### Heimberger et al., in prep

### Aircraft flask-based emission ratios



4-6 flasks per flight Consistent with tower ratios

### **Mass balance emission rates**





|                    | Emission rate<br>(mol/s) |
|--------------------|--------------------------|
| CO winter 2014     | 108 (16%)                |
| $CO_2$ winter 2014 | 14,600 (17%)             |
| CO summer 2015     | 172 (64%)                |

#### Heimberger et al., in prep

# Comparison of whole city flux estimates 9 (preliminary)



Generally good agreement across methods Summer estimate appears too high  $- R_{CO}$  biased by additional CO source?

# Source of CO from oxidation of biogenic VOCs in summer?

### CO stable isotopes partition emission sources



Winter: All CO derived from fossil fuel combustion



Summer: 20-25% of CO from VOC oxidation

Poster P-7 today Vimont et al., in prep

# Comparison of whole city flux estimates 9 (preliminary)



Generally good agreement across methods Summer estimate appears too high  $- R_{CO}$  biased by additional CO source?

# Conclusions

Top-down constraints on urban CO<sub>2</sub>ff emissions

- Tower-based inversion increases CO<sub>2</sub> flux relative to Hestia bottom-up data
  - Next steps use flask/in situ CO to separately constrain CO<sub>2</sub>ff in inversion
- Aircraft-based mass balance flux agrees with inversion
  - In winter, CO<sub>2</sub>-based mass balance and flask/CO-based mass balance agree
  - Summer flask/CO-based mass balance much higher, appears to be due to contribution of CO from VOC oxidation.
- All top-down methods suggest higher flux than Hestia bottom-up estimate



