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Motivation

e Natural gas is often praised as being a
cleaner energy source compared to

Coa I * World dry natural gas consumption by region, 1980-2010 =

trillion cubic feet Cla

* However, leaks in infrastructure lead 1z
to the release of natural gas into the
atmosphere.

e Methane (CH,), the main component
of natural gas, is a greenhouse gas 28
times more potent than CO, over a 0
100 year period 20

e An emission rate of ¥3% would cancel ¢
out any short term environmental
gains associated with reduced CO,
emissions compared to coal.
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How much is leaking?

e EPA estimates 1-2% of
production leaks into
atmosphere using a bottom-
up methodology.

 Top-down methodologies
disagree. Tend to result in
higher emission rates.

Ratios with common baseline (EPA GHGI)
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The Marcellus Projects

Aircraft Campaign Atmospheric Inversion
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- Short term project - Long term project
- 10 flights in May 2015 measuring methane concentrations - 2 years of methane and isotopic data from a tower
upwind and downwind of gas production in NEPA. network across four locations
- Objective: To create a first-guess approximation of - Objective: To observe spatial and temporal properties

The natural gas emission rates from Marcellus activity. of methane emissions from natural gas production.



Aircraft Campaign: May 2015

NOAA Twin Otter Aircraft flying at altitudes
~1000m above ground.

Picarro Trace Gas Analyzer and Ethane sensor
on board

* Measured CH,, CO,, CO, H,0, C,H,
10 successful flights from May 14t-June 3

Observations were compared to projected
enhancements from WRF-Chem simulation

Modeling methane? Need methane inventory!
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Unconventional Wells: 6000+.
High production. 0.13% first
guess rate. SOLVING FOR THIS

Conventional Wells:
60000+. Low production. 11%
leakage rate?

Compressors/Storage/
Pipelines/Distribution sources
included but not solved for

Landfills:
Few but large emitters

Coal Mines:
Enormous emitters located in
southwestern PA

Industrial Sources:
Localized concerns

Enteric Fermentation:
Everyone in PA owns a cow,
but everyone in Lancaster
County owns 100.

Inventory

Total Emissions (log scale ) (mol/ km? hr)
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What we're solving for L What we're not solving for
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WRF-Chem Modeling
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* 9km res grid with 3km nested grid
= centered around wells in northeastern PA

.« Tracers are created for the different

= sources of methane, and concentration
fields are mapped for each of the flight
days

* Emission rates from upstream production
- in model are adjusted to best match
aircraft observations.




Emission Rate Optimization

1. Select appropriate background methane value for flight and
subtract from obs to create “observed methane enhancement”.

-Use observation in lowest 3 percentile as background. Add

2. Subtract off non-natural gas enhancements from the observed
methane enhancement to create an “observed natural gas
enhancement

3. Adjust natural gas emission rate in model to minimize error
between observed natural gas enhancement and modeled natural
gas enhancement.



EXAMPLE: May 29t 2015



May 29t 2015: A good day.

Aircraft Observed CH4 Enhancement (ppm)
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Observed Methane Enhancement
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Observed Methane Enhancement
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Observed Natural Gas Enhancement
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Observed NG vs Modeled NG (Rate=0.13%)
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CASE STUDY: MAY 24t 2015

The Importance of a Good Methane Inventory



The Importance of a Good Methane Inventory
Aircraft Observed CH4 Enhancement (ppm)
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May 24th, 2015: Late flight observations



The Importance of a Good Methane Inventory

Projected natural gas enhancement (ppm)
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May 24th, 2015: Late flight observations

Wells cannot explain
north/south methane
gradient ®




The Importance of a Good Methane Inventory

Projected Enhancement from Coal/Conventional Wells
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May 24th, 2015: Late flight observations Emissions from coal and
conventional wells from
southwestern PA do explain
pattern ©



Aside: Coal Plume is a big player in PA
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The Importance of a Good Methane Inventory

All Sources: (NG Emission rate=0.34%)
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Modeling methane
concentrations allows us to
separate out enhancements
from NG and solve for an
emission rate on even the
messiest days.



EMISSION ESTIMATES



Emission Rate (Percent of Production)
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Best guess upstream emISSIOﬂ estimates

. Model Optlmlzatlon
- Aircraft Mass Balance

Mean rate: 0.55%




Conclusions

e Natural gas emissions in Marcellus region from upstream processes
are ~0.5%

e Study accounts for production and gathering of natural gas. Distribution is
nonexistent in the area.

* WRF-Chem can be an effective tool for calculating natural gas
emission rates.

e Previous studies using mass balance techniques struggle to account for non-
NG sources intruding into box. WRF can identify and separate these plumes.
 Thorough study, but performed over a single month.

e Data obtained from tower network during the next two years will answer
whether emissions rates vary in time.




Extra Material



CASE STUDY: MAY 14t 2015

Addressing the issue of transport error



Transport Errors

-High pressure located near
flight path creates a “swirly
wind” pattern around well
sources

-Presents modeling challenge

Corrected Aircraft Wind
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Transport Errors
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Transport Errors

0.06

#######

= 0.05

Model winds are lacking
westerly component along
east transect. Model plume
goes south of intended
location
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Transport Errors

2 Strategies
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Aside: Coal Plume is a big player in PA
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