Ozone Vertical Profile Measurements in the Northern Front Range of Colorado in July-August 2014 during FRAPPE and DISCOVER-AQ

S.J. Oltmans¹, L.C. Cheadle^{2,3}, B.J. Johnson³, R.C. Schnell³, C.W. Sterling^{2,3}, A.M. Thompson⁴, E.G. Hall^{2,3}, A. McClure-Begley^{2,3}, A.F. Jordan^{2,3} and J. Wendell³

¹Retired from NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305; 303-497-6676, E-mail: samuel.j.oltmans@noaa.gov

²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

³NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305 ⁴NASA Goddard Space Flight Center (GSFC), Atmospheric Chemistry and Dynamics Laboratory, Greenbelt, MD 20771

Ozone (O_3) and temperature profiles were measured from tethered ozonesondes, from release ozonesondes, and continuously from a 300 m tower instrumented at two levels during the FRAPPE/DISCOVER-AQ campaigns in summer 2014. Tethersonde measurements were made on 3 days at a site west of Fort Collins typically, between 8:30 AM and 4:30 PM, averaging 40 profiles a day. Forty release ozonesondes were flown from Platteville with multiple profiles on a number of days. Continuous O₂ profiles from a tall tower (6 and 300 m) east of Boulder tracked O₂ variability through the experiment. The release ozonesondes demonstrated the important role of morning mixing from the upper boundary layer or lower free troposphere into the lower boundary layer. This mixing established the mid-morning boundary layer O, mixing ratio from which the daily photochemical production progressed. The generally constant mixing ratio with height and highest mixing ratios above the surface seen in the near-continuous tethersonde profiles indicate that photochemical O₂ production was taking place throughout the profile. This suggests that O₂ precursors are mixed through the boundary layer enabling widespread O₂ production. Tethersonde wind measurements on August 3, a high O₂ day at Fort Collins, showed consistent winds out of the southeast indicating a source of O₂ precursors from oil and gas operations. O₂ growth rates on high O₂ days (peak hourly value \geq 75 ppb) computed during the time of peak O₂ production (10:00 AM – 3:00 PM) was in the range of 4.5-6 ppbv/hour through the measured profile from both the tethersonde and tower measurements.

Figure 1. Tethered ozonesonde profiles from Fort Collins on August 3, 2014 showing ozone buildup during the day.