
## Highlighted Speaker - Implications of the Continued Increase in Atmospheric Methane Burden

E.J. Dlugokencky<sup>1</sup>, M.J. Crotwell<sup>2,1</sup>, A.M. Crotwell<sup>2,1</sup>, P.M. Lang<sup>1</sup>, L. Bruhwiler<sup>1</sup>, A.Q. Wang<sup>1</sup> and K. Thoning<sup>1</sup>

<sup>1</sup>NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305;
303-497-6228, E-mail: ed.dlugokencky@noaa.gov
<sup>2</sup>Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

Measurements of methane (CH<sub>4</sub>) from weekly air samples collected in GMD's cooperative global air sampling network provide an important constraint on the global CH<sub>4</sub> budget. In 2016, atmospheric CH<sub>4</sub> continued to increase, and the average rate of increase during 2014 to 2016 was ~11 ppb yr<sup>-1</sup>. In contrast, the growth rate of atmospheric CH<sub>4</sub> was near-zero from 1999 to 2006. While atmospheric CH<sub>4</sub>'s current rate of increase is still lower than it was in the early-1980s, emissions are likely greater now than any time since NOAA measurements began in 1983. Figure 1 shows emissions estimated from a 1-box mass balance using the observed global annual mean burden and annual increase combined with an estimate of CH<sub>4</sub>'s lifetime. With the assumption of no trend in lifetime, we found no trend in emissions from 1984-2006 (blue circles and dashed line). This result contrasts with Emission Database for Global Atmospheric Research (EDGAR) anthropogenic emissions plus a fixed amount for natural emissions (red triangles), which shows a significant trend driven mostly by increased production and use of fossil fuels. In 2007, our estimate of emissions from the observations increased above the 1984-2006 trend, then increased further starting in 2014. We've identified changing tropical emissions related to precipitation as a likely major contributor to the renewed increase in atmospheric CH<sub>4</sub>, but many additional processes must also be involved. The details of the causes, although still not known, are important for CH<sub>4</sub>'s future impact on climate.



**Figure 1.** Total global  $CH_4$  emissions determined from observations (blue) and from EDGAR inventory plus fixed natural emissions (red). Observation-based estimates are based on mass balance using  $CH_4$  global annual means and annual increase and a constant lifetime of 9.1 yr to calculate loss. The dashed line is a straight line fitted to the annual emissions from 1984-2006 (slope =  $0\pm0.6$  Tg  $CH_4$  yr<sup>-1</sup>; 95% CI). We add 245 Tg  $CH_4$  yr<sup>-1</sup> natural emissions to EDGAR's anthropogenic emissions to get total global emissions.