
Variability in Inter-hemispheric Exchange Inferred from Tropospheric Measurements of SF₆

B.D. Hall¹, E.J. Dlugokencky¹, G.S. Dutton^{2,1}, D. Nance^{2,1}, D. Mondeel^{2,1} and J.W. Elkins¹

¹NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305;
303-497-7011, E-mail: Bradley.Hall@noaa.gov
²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

With a long atmospheric lifetime (~850 yr) and no known tropospheric or stratospheric loss processes, sulfur hexaflouride (SF₆) is useful as a tracer of large-scale atmospheric transport. The latitudinal gradient has been used to assess model transport, in terms of both inter-hemispheric exchange, as well as mean transport time, or tropospheric "age of air". We derive an inter-hemispheric exchange time, τ_{ex} , from global surface measurements of SF₆. We find an annual cycle with a minimum in late Northern Hemisphere summer and maximum in spring. Some years show a bi-modal cycle, as depicted in some atmospheric models, with a second maximum occurring in fall/winter. We also see inter-annual variability, with some years showing relatively slower exchange than others. Climate drivers, such as El Niño Southern Oscillation (ENSO), and their possible affect on τ_{ex} inter-annual variability and associated impacts on trace gas distributions are examined.

Figure 1. Annual cycle of inter-hemispheric exchange time derived from surface measurements of SF_6 (symbols) and a mean model result over the same period from Patra et. al, 2009 [Atmos. Chem. Phys., 9, 1209–1225, 2009].