
Optical Detection of Radiocarbon (14C) Below Modern Levels by Cavity Ring-down Spectroscopy

A.J. Fleisher, D.A. Long, Q. Liu and J.T. Hodges

National Institute of Standards and Technology (NIST), Gaithersburg, MD 20880; 301-975-4864, E-mail: adam.fleisher@nist.gov

We report the optical detection of radiocarbon (¹⁴C) in biogenic carbon dioxide (CO₂) samples with a fraction modern carbon of F < 1 using a mid-infrared laser spectrometer. The table-top instrument operates on the principles of cavity ring-down spectroscopy in the linear absorption regime by measuring the mole fraction of absorbers $\chi = (\int \alpha(v) dv)/(cnS)$, where *c* is the speed of light, *n* is the total number density, *S* is the absorption line strength, α is the measured absorption coefficient, and v is the laser frequency. The absorption coefficient coefficient α is related to the time constant of the optical resonator in the presence of molecular absorbers τ by the simple equation $\alpha = 1/(c\tau)-1/(c\tau_0)$, where τ_0 is the empty-cavity time constant. The optical detection of radiocarbon by linear absorption spectroscopy is therefore fundamentally different from the seminal laser experiments based on non-linear saturated absorption cavity ring-down (SCAR). Measurements of χ_{14} for biogenic and petrogenic CO₂ samples, respectively, were used to determine the limits of our first-generation radiocarbon spectrometer capable of definitively distinguishing samples of CO₂ with F < 1.

Figure 1. Left. Spectrum of radiocarbon dioxide (¹⁴CO₂) for a biogenic sample of CO₂ with F = 0.86. Right. Spectrum of a petrogenic sample of CO₂ with F = 0. Fraction modern (*F*) was independently measured for each sample by a commercial accelerator mass spectrometry laboratory. Nearby ¹³CO₂ and N₂O interferences were mitigated by reducing the sample temperature to T = 220 K. The spectrometer comprises a quantum cascade laser, fast optical switch, high-finesse optical resonator and cold cell, low-noise photoreceiver, analog-to-digital converter, and computer software for signal processing.